Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing. 氧化镁纳米粒子对 PVA/PEG 基膜的影响在伤口愈合中的潜在应用。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-01 DOI: 10.1080/09205063.2024.2364526
Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim
{"title":"The effect of MgO nanoparticle on PVA/PEG-based membranes for potential application in wound healing.","authors":"Massar Najim Obaid, Ohood Hmaizah Sabr, Ban Jawad Kadhim","doi":"10.1080/09205063.2024.2364526","DOIUrl":"10.1080/09205063.2024.2364526","url":null,"abstract":"<p><p>The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (T<sub>m</sub>). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1963-1977"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. 开发具有骨/牙组织工程应用潜力的新型混合纳米材料:富集-SAPO-34/CS/PANI 支架的设计、制造和表征。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2366638
Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa
{"title":"Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold.","authors":"Golnaz Navidi, Saeideh Same, Maryam Allahvirdinesbat, Parvaneh Nakhostin Panahi, Kazem Dindar Safa","doi":"10.1080/09205063.2024.2366638","DOIUrl":"10.1080/09205063.2024.2366638","url":null,"abstract":"<p><p>Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2090-2114"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. 甲氨蝶呤负载和白蛋白涂层聚合物纳米粒子的设计、优化和评估。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-06-18 DOI: 10.1080/09205063.2024.2366619
Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher
{"title":"Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles.","authors":"Gaurav Tiwari, Anasuya Patil, Pranshul Sethi, Ankur Agrawal, Vaseem A Ansari, Mahesh Kumar Posa, Vaibhav Dagaji Aher","doi":"10.1080/09205063.2024.2366619","DOIUrl":"10.1080/09205063.2024.2366619","url":null,"abstract":"<p><p>Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, <i>in vitro</i> drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2068-2089"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation. 通过树突状纳米粒子介导的双氯芬酸表面修饰和锶离子封装疗法,对炎症和软骨生成进行时间调节。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1080/09205063.2024.2366080
Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu
{"title":"Temporal modulation of inflammation and chondrogenesis through dendritic nanoparticle-mediated therapy with diclofenac surface modification and strontium ion encapsulation.","authors":"Peng Cheng, Jun Yang, Song Wu, Linlin Xie, Yong Xu, Nanjian Xu, Yafeng Xu","doi":"10.1080/09205063.2024.2366080","DOIUrl":"10.1080/09205063.2024.2366080","url":null,"abstract":"<p><p>Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. <i>In vitro</i> assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2049-2067"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of PTFE + TiO2/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters. 在 316L/聚多巴胺上制造具有先进机械、生物防腐和抗菌性能的聚四氟乙烯+二氧化钛/银涂层,用于不锈钢导管。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-06-16 DOI: 10.1080/09205063.2024.2365047
Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar
{"title":"Fabrication of PTFE + TiO<sub>2</sub>/Ag coatings on 316L/polydopamine with advanced mechanical, bio-corrosion, and antibacterial properties for stainless steel Catheters.","authors":"Mohammad Sajjad Sheikhzadeh, Reza Ahmadi, Niloufar Ghamari, Abdollah Afshar","doi":"10.1080/09205063.2024.2365047","DOIUrl":"10.1080/09205063.2024.2365047","url":null,"abstract":"<p><p>This study explores the corrosion resistance and antibacterial properties of a PTFE + TiO<sub>2</sub>/Ag coating applied to 316 L stainless steel. To enhance adhesion, a polydopamine interlayer was chemically deposited onto the steel surface. The PTFE + TiO<sub>2</sub> coating was subsequently applied through immersion, followed by the deposition of silver nanoparticles using a chemical method. Optimization of the polydopamine interlayer involved varying temperature, time, stirring speed, and drying parameters. The optimal conditions for the polydopamine interlayer were determined to be 60 °C for 1 h, 300 rpm stirring, and 24-h drying in a freeze dryer. Analytical results demonstrated that both the PTFE + TiO<sub>2</sub> and PTFE/PTFE + TiO<sub>2</sub>/Ag coatings exhibited exceptional corrosion resistance, with corrosion currents of 3.3 × 10<sup>-5</sup> and 3.2 × 10<sup>-4</sup> μA/cm<sup>2</sup>, respectively. Antibacterial assessments showcased the remarkable ability of the PTFE/PTFE + TiO<sub>2</sub>/Ag coating, containing 5% silver content, to effectively inhibit bacterial penetration within a 6.5 mm radius. Furthermore, this coating displayed a water contact angle of 143°, classifying it as a hydrophobic coating. The photocatalytic efficiency (Rs) was determined to be 3.18 × 10<sup>-3</sup> A/W, a performance level comparable to that of a standard UV sensor. These findings underscore the substantial enhancements in corrosion resistance, antibacterial performance, and hydrophobic characteristics achieved with the PTFE + TiO<sub>2</sub>/Ag coating, particularly through the novel optimization of the polydopamine interlayer. This coating exhibits great promise for multifunctional protective applications in diverse fields, particularly demonstrating its suitability for implants and bio-coatings.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2020-2048"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells. 制备具有 pH 响应性的替莫唑胺(TMZ)-叠层单宁酸改性沸石咪唑纳米框架(ZIF-8),增强抗癌活性并诱导胶质瘤癌细胞凋亡。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1080/09205063.2024.2364533
Chongwen Ren, Qingqing Tu, Jinchao He
{"title":"Fabrication of pH-responsive temozolomide (TMZ)-clacked tannic acid-altered zeolite imidazole nanoframeworks (ZIF-8) enhance anticancer activity and apoptosis induction in glioma cancer cells.","authors":"Chongwen Ren, Qingqing Tu, Jinchao He","doi":"10.1080/09205063.2024.2364533","DOIUrl":"10.1080/09205063.2024.2364533","url":null,"abstract":"<p><p>Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1978-1998"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying. 通过电喷雾法制备含有载人生长激素壳聚糖纳米颗粒的可注射的 pH 和温度敏感的五嵌段水凝胶及其特性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-01 Epub Date: 2024-07-07 DOI: 10.1080/09205063.2024.2365043
Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen
{"title":"Preparation and characterization of the injectable pH- and temperature-sensitive pentablock hydrogel containing human growth hormone-loaded chitosan nanoparticles via electrospraying.","authors":"Dai Phu Huynh, Thien Anh Tran, Thi Thanh Hang Nguyen, Vu Viet Linh Nguyen","doi":"10.1080/09205063.2024.2365043","DOIUrl":"10.1080/09205063.2024.2365043","url":null,"abstract":"<p><p>This research investigated the <i>in vivo</i> gelation, biodegradation, and drug release efficiency of a novel injectable sensitive drug delivery system for human growth hormone (HGh). This composite system comprises pH- and temperature-sensitive hydrogel, designated as oligomer serine-b-poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide)-b-oligomer serine (OS-PLA-PEG-PLA-OS) pentablock copolymer, as matrix and electrosprayed HGh-loaded chitosan (HGh@CS) nanoparticles (NPs) as principal material. The proton nuclear magnetic resonance spectrum of the pH- and temperature-sensitive OS-PLA-PEG-PLA-OS pentablock copolymer hydrogel proved that this copolymer was successfully synthesized. The HGh was encapsulated in chitosan (CS) NPs by an electrospraying system in acetic acid with appropriate granulation parameters. The scanning electron microscopy images and size distribution showed that the HGh@CS NPs formed had an average diameter of 366.1 ± 214.5 nm with a discrete spherical shape and dispersed morphology. The sol-gel transition of complex gel based on HGh@CS NPs and OS-PLA-PEG-PLA-OS pentablock hydrogel was investigated at 15 °C and pH 7.8 in the sol state and gelled at 37 °C and pH 7.4, which is suitable for the physiological conditions of the human body. The HGh release experiment of the composite system was performed in an <i>in vivo</i> environment, which demonstrated the ability to release HGh, and underwent biodegradation within 32 days. The findings of the investigation revealed that the distribution of HGh@CS NPs into the hydrogel matrix not only improved the mechanical properties of the gel matrix but also controlled the drug release kinetics into the systematic bloodstream, which ultimately promotes the desired therapeutic body growth depending on the distinct concentration used.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1999-2019"},"PeriodicalIF":3.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. 卡莫司汀和卡巴他赛联合给药脂质体制剂的制备提高了细胞毒性潜力,并诱导卵巢癌细胞凋亡。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-29 DOI: 10.1080/09205063.2024.2387949
Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu
{"title":"Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells.","authors":"Jianming Gong, Renqian Feng, Xiaoqing Fu, Qi Lin, Bicheng Wu","doi":"10.1080/09205063.2024.2387949","DOIUrl":"10.1080/09205063.2024.2387949","url":null,"abstract":"<p><p>Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeyA8 cells in an <i>in vitro</i> model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. 用于持续释放阿昔洛韦治疗生殖器疱疹的热塑性聚氨酯设备的添加剂制造。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396221
Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria
{"title":"Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release.","authors":"Victor de Carvalho Rodrigues, Iara Zanella Guterres, Beatriz Pereira Savi, Gislaine Fongaro, Izabella Thaís Silva, Gean Vitor Salmoria","doi":"10.1080/09205063.2024.2396221","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396221","url":null,"abstract":"<p><p>The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-16"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. 石墨烯功能化聚合物表面在牙科应用中的潜力:系统回顾
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-27 DOI: 10.1080/09205063.2024.2396224
Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri
{"title":"Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review.","authors":"Rohit Kumar Singh, Khyati Verma, G C Mohan Kumar, Mallikarjun B Jalageri","doi":"10.1080/09205063.2024.2396224","DOIUrl":"https://doi.org/10.1080/09205063.2024.2396224","url":null,"abstract":"<p><p>Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信