3D bioprinted alginate/gelatin hydrogel: concentration modulated properties toward scar-minimized wound healing.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Tian Jiao, Chaofan Sun, Zhuo Wang, Guiquan Han, Haoping Wang
{"title":"3D bioprinted alginate/gelatin hydrogel: concentration modulated properties toward scar-minimized wound healing.","authors":"Tian Jiao, Chaofan Sun, Zhuo Wang, Guiquan Han, Haoping Wang","doi":"10.1080/09205063.2025.2491609","DOIUrl":null,"url":null,"abstract":"<p><p>The critical shortage of transplantable skin remains a leading cause of mortality in patients with severe skin injuries, driving the demand for advanced 3D-bioprinted constructs. While hydrogel-based bioinks are pivotal for skin tissue engineering, existing systems often fail to simultaneously address biomechanical compatibility, scar suppression, and cell viability. Here, we propose a rationally designed sodium alginate/gelatin (SA/Gel) hydrogel platform through composition-property-performance correlation analysis. Systematic characterization revealed that increasing gelatin content (8-12 wt%) enhanced viscosity (by 2.5-fold), compressive modulus (25.6 ± 2.7 kPa to 37.9 ± 3.5 kPa), tensile fracture elongation (57.9 ± 4.2% to 92.1 ± 1.3%), and print fidelity, while reducing degradation ratio (62.8 ± 2.9% to 26.4 ± 2.4% at day 14) and pore size (128.5 ± 16.6 μm to 79.4 ± 19.7 μm). The optimized A4G10 formulation exhibited synergistic advantages: (1) dynamic swelling (36.3 ± 0.8%) balanced nutrient permeation with structural stability; (2) tunable degradation (47.2% at day 14) matched neo-tissue formation; (3) anisotropic mechanical properties (compressive modulus 32.2 ± 4.1 kPa, tensile modulus 31.7 ± 3.9 kPa) mimicked native skin mechanics; (4) sub-100 μm porous architecture (102.9 ± 12.4 μm) effectively suppressed fibroblast over--proliferation. Remarkably, the SA/Gel scaffolds maintained 98% cell viability (Live/Dead assay) <i>in vitro</i>, while suppressing fibrotic tissue formation and facilitating angiogenesis <i>in vivo</i>. This multi-functional SA/Gel system demonstrates unprecedented potential as a scar--inhibiting bioink for clinical-grade skin regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2491609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The critical shortage of transplantable skin remains a leading cause of mortality in patients with severe skin injuries, driving the demand for advanced 3D-bioprinted constructs. While hydrogel-based bioinks are pivotal for skin tissue engineering, existing systems often fail to simultaneously address biomechanical compatibility, scar suppression, and cell viability. Here, we propose a rationally designed sodium alginate/gelatin (SA/Gel) hydrogel platform through composition-property-performance correlation analysis. Systematic characterization revealed that increasing gelatin content (8-12 wt%) enhanced viscosity (by 2.5-fold), compressive modulus (25.6 ± 2.7 kPa to 37.9 ± 3.5 kPa), tensile fracture elongation (57.9 ± 4.2% to 92.1 ± 1.3%), and print fidelity, while reducing degradation ratio (62.8 ± 2.9% to 26.4 ± 2.4% at day 14) and pore size (128.5 ± 16.6 μm to 79.4 ± 19.7 μm). The optimized A4G10 formulation exhibited synergistic advantages: (1) dynamic swelling (36.3 ± 0.8%) balanced nutrient permeation with structural stability; (2) tunable degradation (47.2% at day 14) matched neo-tissue formation; (3) anisotropic mechanical properties (compressive modulus 32.2 ± 4.1 kPa, tensile modulus 31.7 ± 3.9 kPa) mimicked native skin mechanics; (4) sub-100 μm porous architecture (102.9 ± 12.4 μm) effectively suppressed fibroblast over--proliferation. Remarkably, the SA/Gel scaffolds maintained 98% cell viability (Live/Dead assay) in vitro, while suppressing fibrotic tissue formation and facilitating angiogenesis in vivo. This multi-functional SA/Gel system demonstrates unprecedented potential as a scar--inhibiting bioink for clinical-grade skin regeneration.

生物3D打印海藻酸盐/明胶水凝胶:对疤痕最小化伤口愈合的浓度调节特性。
可移植皮肤的严重短缺仍然是严重皮肤损伤患者死亡的主要原因,推动了对先进3d生物打印结构的需求。虽然基于水凝胶的生物墨水是皮肤组织工程的关键,但现有的系统往往无法同时解决生物力学相容性、疤痕抑制和细胞活力问题。本文通过组成-性能-性能相关分析,提出了一种合理设计的海藻酸钠/明胶(SA/Gel)水凝胶平台。系统表征表明,增加明胶含量(8-12 wt%)可提高黏度(2.5倍)、压缩模量(25.6±2.7 kPa至37.9±3.5 kPa)、拉伸断裂伸长率(57.9±4.2%至92.1±1.3%)和打印保真度,同时降低降解率(第14天62.8±2.9%至26.4±2.4%)和孔径(128.5±16.6 μm至79.4±19.7 μm)。优化后的A4G10配方具有协同效应:(1)动态溶胀(36.3±0.8%)平衡了营养渗透与结构稳定性;(2)可调节的降解(第14天47.2%)与新组织形成相匹配;(3)各向异性力学性能(压缩模量32.2±4.1 kPa,拉伸模量31.7±3.9 kPa)模拟天然皮肤力学;(4)亚100 μm孔隙结构(102.9±12.4 μm)有效抑制成纤维细胞过度增殖。值得注意的是,SA/Gel支架在体外维持98%的细胞活力(活/死试验),同时抑制纤维化组织形成,促进体内血管生成。这种多功能的SA/Gel系统显示了前所未有的潜力,作为一种疤痕抑制生物链接,用于临床级皮肤再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信