Omid Fakhraei, Hosein Rostamani, Aida Aliebrahim Nosh Abad, Shaniya Valizadeh, Mohammad Mahdi Bakhshayeshi, Mohammad Rafienia
{"title":"Enhanced biological properties of polyvinyl alcohol-polycaprolactone/hyaluronic acid-coated electrospun scaffolds for articular cartilage regeneration.","authors":"Omid Fakhraei, Hosein Rostamani, Aida Aliebrahim Nosh Abad, Shaniya Valizadeh, Mohammad Mahdi Bakhshayeshi, Mohammad Rafienia","doi":"10.1080/09205063.2025.2492462","DOIUrl":null,"url":null,"abstract":"<p><p>This study provides a cohesive framework to putting forth PVA-PCL scaffolds coated with hyaluronic acid (HA) hydrogel to mimic the characteristics of articular cartilage, as a cost-effective tissue engineering alternative. PVA and PCL solutions were prepared and electrospun under measured conditions, with parameters adjusted to fabricate aligned and random fiber orientations. Afterward, the scaffold was integrated with the optimal hydrogel, selected for its superior water absorption and hydrophilicity. The thickness of the hydrogel layer satisfied the criteria for supporting chondrocyte function, and the study assesses its effect on cell viability. Scaffolds were characterized using field emission scanning electron microscopy (FE-SEM) for morphology, energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, Fourier transform infrared (FTIR) spectroscopy for chemical composition, and tensile tests for mechanical behavior. The surface wettability was determined by contact angle measurements. Biological properties were assessed through cytotoxicity, protein absorption assays and cell adhesion tests with visualization of cell distribution using DAPI staining, fluorescence microscopy, and FE-SEM. Using a hydrolytic mechanism, biodegradation was assessed using pH variations and weight loss measurements. Accordingly, randomly oriented hydrogel-coated scaffolds yielded the most favorable biological outcomes to produce a tissue-friendly, biologically robust graft that closely mimics the natural cartilage extracellular matrix. The pore size and distribution of these scaffolds were more uniform than those of aligned structures. The findings suggest possibilities for customizing scaffold properties through fiber orientation, polymer blending, and surface coating to optimize cell response and tissue formation. Combining electrospun PVA-PCL with chondrocytes-seeded hydrogels offers a way to improve articular cartilage regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-29"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2492462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides a cohesive framework to putting forth PVA-PCL scaffolds coated with hyaluronic acid (HA) hydrogel to mimic the characteristics of articular cartilage, as a cost-effective tissue engineering alternative. PVA and PCL solutions were prepared and electrospun under measured conditions, with parameters adjusted to fabricate aligned and random fiber orientations. Afterward, the scaffold was integrated with the optimal hydrogel, selected for its superior water absorption and hydrophilicity. The thickness of the hydrogel layer satisfied the criteria for supporting chondrocyte function, and the study assesses its effect on cell viability. Scaffolds were characterized using field emission scanning electron microscopy (FE-SEM) for morphology, energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, Fourier transform infrared (FTIR) spectroscopy for chemical composition, and tensile tests for mechanical behavior. The surface wettability was determined by contact angle measurements. Biological properties were assessed through cytotoxicity, protein absorption assays and cell adhesion tests with visualization of cell distribution using DAPI staining, fluorescence microscopy, and FE-SEM. Using a hydrolytic mechanism, biodegradation was assessed using pH variations and weight loss measurements. Accordingly, randomly oriented hydrogel-coated scaffolds yielded the most favorable biological outcomes to produce a tissue-friendly, biologically robust graft that closely mimics the natural cartilage extracellular matrix. The pore size and distribution of these scaffolds were more uniform than those of aligned structures. The findings suggest possibilities for customizing scaffold properties through fiber orientation, polymer blending, and surface coating to optimize cell response and tissue formation. Combining electrospun PVA-PCL with chondrocytes-seeded hydrogels offers a way to improve articular cartilage regeneration.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.