聚合物为基础的方法在糖尿病伤口愈合的进展:一个全面的回顾。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Lakshmi Priya P, Tanmoy Ghosh, Ramya Sri, Basavaraj B V
{"title":"聚合物为基础的方法在糖尿病伤口愈合的进展:一个全面的回顾。","authors":"Lakshmi Priya P, Tanmoy Ghosh, Ramya Sri, Basavaraj B V","doi":"10.1080/09205063.2025.2492777","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes, both Type 1 and Type 2, often leads to chronic wounds due to impaired healing processes, marked by prolonged inflammation, delayed blood vessel formation, and abnormal collagen production. These issues disrupt normal tissue regeneration, slowing healing. To address these challenges, polymer-based wound dressings are being explored as a promising solution. Natural polymers like alginate, chitosan, and hyaluronic acid, as well as synthetic ones like PCL, PLA, and PLGA, offer potential for more effective healing. These materials can be used in advanced delivery systems, such as nanofibrous scaffolds, nanoparticles, and hydrogels, which help deliver medications, maintain a moist healing environment, and stimulate cell growth. By improving the wound environment, polymer-based systems provide new hope for diabetic patients with slow-to-heal wounds, enhancing therapeutic outcomes and accelerating healing. These innovations could significantly improve the management of chronic wounds in diabetes.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-15"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in polymer-based approaches in diabetic wound healing: a comprehensive review.\",\"authors\":\"Lakshmi Priya P, Tanmoy Ghosh, Ramya Sri, Basavaraj B V\",\"doi\":\"10.1080/09205063.2025.2492777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes, both Type 1 and Type 2, often leads to chronic wounds due to impaired healing processes, marked by prolonged inflammation, delayed blood vessel formation, and abnormal collagen production. These issues disrupt normal tissue regeneration, slowing healing. To address these challenges, polymer-based wound dressings are being explored as a promising solution. Natural polymers like alginate, chitosan, and hyaluronic acid, as well as synthetic ones like PCL, PLA, and PLGA, offer potential for more effective healing. These materials can be used in advanced delivery systems, such as nanofibrous scaffolds, nanoparticles, and hydrogels, which help deliver medications, maintain a moist healing environment, and stimulate cell growth. By improving the wound environment, polymer-based systems provide new hope for diabetic patients with slow-to-heal wounds, enhancing therapeutic outcomes and accelerating healing. These innovations could significantly improve the management of chronic wounds in diabetes.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2492777\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2492777","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病,包括1型和2型,通常由于愈合过程受损而导致慢性伤口,其特征是炎症延长、血管形成延迟和胶原蛋白生成异常。这些问题破坏了正常的组织再生,减缓了愈合。为了应对这些挑战,聚合物伤口敷料作为一种有前景的解决方案正在被探索。海藻酸盐、壳聚糖和透明质酸等天然聚合物,以及PCL、PLA和PLGA等合成聚合物,提供了更有效治疗的潜力。这些材料可用于先进的输送系统,如纳米纤维支架、纳米颗粒和水凝胶,它们有助于输送药物,维持湿润的愈合环境,并刺激细胞生长。通过改善伤口环境,聚合物基系统为糖尿病患者愈合缓慢的伤口提供了新的希望,提高了治疗效果,加速了愈合。这些创新可以显著改善糖尿病慢性伤口的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in polymer-based approaches in diabetic wound healing: a comprehensive review.

Diabetes, both Type 1 and Type 2, often leads to chronic wounds due to impaired healing processes, marked by prolonged inflammation, delayed blood vessel formation, and abnormal collagen production. These issues disrupt normal tissue regeneration, slowing healing. To address these challenges, polymer-based wound dressings are being explored as a promising solution. Natural polymers like alginate, chitosan, and hyaluronic acid, as well as synthetic ones like PCL, PLA, and PLGA, offer potential for more effective healing. These materials can be used in advanced delivery systems, such as nanofibrous scaffolds, nanoparticles, and hydrogels, which help deliver medications, maintain a moist healing environment, and stimulate cell growth. By improving the wound environment, polymer-based systems provide new hope for diabetic patients with slow-to-heal wounds, enhancing therapeutic outcomes and accelerating healing. These innovations could significantly improve the management of chronic wounds in diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信