Journal of Biomaterials Science, Polymer Edition最新文献

筛选
英文 中文
Double-crosslinked self-healing hydrogel alleviates osteoarthritis by protecting from wearing and targeting NF-kB signaling. 双交联自愈合水凝胶通过防止磨损和靶向 NF-kB 信号传导缓解骨关节炎。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI: 10.1080/09205063.2024.2360759
Shengyun Li, Jie Yang
{"title":"Double-crosslinked self-healing hydrogel alleviates osteoarthritis by protecting from wearing and targeting NF-kB signaling.","authors":"Shengyun Li, Jie Yang","doi":"10.1080/09205063.2024.2360759","DOIUrl":"10.1080/09205063.2024.2360759","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a chronic disease that causes pain, morbidity, and disability. The main strategy for OA treatment focuses on inflammation suppression, inhibition of osteoclastogenesis, and protection of articular cartilage. These functions cannot be performed effectively by monotherapy. Therefore, an effective drug delivery system is required, capable of containing and controlling the efflux of various drugs to alleviate osteoclastogenesis, protect cartilage and subchondral bone, and suppress inflammation. In this work, an encapsulation system is constructed using a self-healing chitosan hydrogel and allocated compound drugs. The self-healing gel is composed of branched-functionalized chitosan, created by simultaneously using polycaprolactone polyethylene glycol azide as a block polymer and the host-guest assembly of β-cyclodextrin and adamantane. Inhibitors of the NFkB pathway are loaded into the cavities of β-cyclodextrin and the spring-like structure of the block polymer, which can be rapidly released upon joint friction (due to the reassembly of β-cyclodextrin and adamantane by shear stress and the stretch of the block polymer). <i>In vitro</i> experiments using BMMs and the ATDC5 cell line confirm that the developed hydrogel can simultaneously suppress osteoclastogenesis and induce chondrogenesis. Additionally, a model of knee arthritis in C57 mice was used to confirm that this double-crosslinked encapsulation system can lubricate the knee joint surface and provide adequate protection on demand through shear-responsive drug release.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au/Doc/Quer@PDA/A10-3.2 Nanoparticles for targeted treatment of docetaxel-resistant prostate cancer. Au/Doc/Quer@PDA/A10-3.2 纳米粒子用于多西他赛耐药前列腺癌的靶向治疗。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI: 10.1080/09205063.2024.2346395
Junjie Ye, Qi Wu, Qingfen Ji, Shengjie You, Song Gao, Guanan Zhao, Qiangqiang Xu, Ken Liu, Peng Li
{"title":"Au/Doc/Quer@PDA/A10-3.2 Nanoparticles for targeted treatment of docetaxel-resistant prostate cancer.","authors":"Junjie Ye, Qi Wu, Qingfen Ji, Shengjie You, Song Gao, Guanan Zhao, Qiangqiang Xu, Ken Liu, Peng Li","doi":"10.1080/09205063.2024.2346395","DOIUrl":"10.1080/09205063.2024.2346395","url":null,"abstract":"<p><p>Docetaxel (Doc), as a first-line chemotherapy drug for prostate cancer (PC), often loses its therapeutic efficacy due to acquired resistance and lack of targeting specificity. Therefore, there is a need to develop a novel drug that can overcome Doc resistance and enhance its targeting ability to inhibit PC progression. In this study, we prepared Au/Doc/Quer@PDA/A10-3.2 nanoparticles (NPs) composite drug by encapsulating Doc and quercetin (Quer) within polydopamine (PDA)-coated Au NPs and further modifying them with RNA oligonucleotide aptamer A10-3.2. A10-3.2 was used for specific targeting of prostate-specific membrane antigen (PSMA)-positive PC cells (LNCaP). Quer was employed to reverse the resistance of Doc-resistant cell line (LNCaP/R) to Doc. Physical characterization using ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) confirmed the successful preparation of Au/Doc/Quer@PDA/A10-3.2 NPs. Fluorescence imaging and flow cytometry experiments demonstrated the targeting ability of Au/Doc/Quer@PDA/A10-3.2 NPs towards PSMA-positive LNCaP/R cells. Cell proliferation, apoptosis, invasion, and migration experiments revealed that Quer reversed the resistance of LNCaP/R cells to Doc. Immunoblotting experiments further confirmed the mechanism behind sensitization of chemotherapy by Quer. Finally, we evaluated the therapeutic efficacy of Au/Doc/Quer@PDA/A10-3.2 NPs in a mouse model of PC. In conclusion, this study synthesized and validated a novel nano-composite drug (Au/Doc/Quer@PDA/A10-3.2 NPs) for combating Doc-resistant PC, which could potentially be applied in clinical treatment of PC.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specific delivery of metronidazole using microparticles and thermosensitive in situ hydrogel for intrapocket administration as an alternative in periodontitis treatment. 利用微颗粒和热敏性原位水凝胶特异性递送甲硝唑,作为牙周炎治疗的窝内给药替代方案。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI: 10.1080/09205063.2024.2349414
Nurul Muhlisah Maddeppungeng, Nor Atikah Syahirah, Nasyrah Hidayati, Fadhlil U A Rahman, Karima Qurnia Mansjur, Irene E Rieuwpassa, Dian Setiawati, Muhammad Fadhlullah, Anugerah Yaumil Ramadhani Aziz, Azimah Salsabila, Ahmad R Alsayed, Boonnada Pamornpathomkul, Andi Dian Permana, Rafikah Hasyim
{"title":"Specific delivery of metronidazole using microparticles and thermosensitive <i>in situ</i> hydrogel for intrapocket administration as an alternative in periodontitis treatment.","authors":"Nurul Muhlisah Maddeppungeng, Nor Atikah Syahirah, Nasyrah Hidayati, Fadhlil U A Rahman, Karima Qurnia Mansjur, Irene E Rieuwpassa, Dian Setiawati, Muhammad Fadhlullah, Anugerah Yaumil Ramadhani Aziz, Azimah Salsabila, Ahmad R Alsayed, Boonnada Pamornpathomkul, Andi Dian Permana, Rafikah Hasyim","doi":"10.1080/09205063.2024.2349414","DOIUrl":"10.1080/09205063.2024.2349414","url":null,"abstract":"<p><p>Periodontitis is a common chronic inflammatory disease primarily caused by the prevalence of bacterial overgrowth resulting in the development of an inflammatory condition that destroys the tooth's supporting tissues and eventual tooth loss. Comparatively, to other treatment methods, it is difficult for topical antibacterial drugs to effectively permeate the biofilm's physical barrier, making conventional therapy for periodontitis more challenging. This novel study combines thermosensitive <i>in situ</i> hydrogel with microparticles (MPs) to enhance the targeted delivery of metronidazole (MET) to the periodontal pocket. Polycaprolactone (PCL) polymer was utilized to produce bacteria-sensitive MPs. Additionally, the study assessed the attributes of MPs and demonstrated an enhancement in the <i>in vitro</i> antibacterial efficacy of MPs towards <i>Staphylococcus aureus</i> (SA) and <i>Escherichia coli</i> (EC). Subsequently, we incorporated MET-MPs into thermosensitive <i>in situ</i> hydrogel formulations using chitosan. The optimized formulations exhibited stability, appropriate gelation temperature, mucoadhesive strength, and viscosity. <i>In vitro</i> permeation tests showed selective and prolonged drug release against SA and EC. <i>Ex vivo</i> experiments demonstrated no significant differences between <i>in situ</i> hydrogel containing pure MET and MET-MPs in biofilm quantity, bacterial counts, and metabolic activity in biofilms. According to <i>in vitro</i> tests and the effectiveness of the antibacterial activity, this study has exhibited a novel methodology for more efficacious therapies for periodontitis. This study aims to utilize MET in MPs to improve its effectiveness, enhance its antibacterial activity, and improve patient treatment outcomes. In further research, the efficacy of the treatment should be investigated <i>in vivo</i> using an appropriate animal model.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens. 含有 Silibinin 的壳聚糖银纳米粒子对耐药性医院病原体具有强大的抗菌、抗生物膜和消炎活性。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-24 DOI: 10.1080/09205063.2024.2355744
Umesh Chand, Pramod Kumar Kushawaha
{"title":"Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens.","authors":"Umesh Chand, Pramod Kumar Kushawaha","doi":"10.1080/09205063.2024.2355744","DOIUrl":"10.1080/09205063.2024.2355744","url":null,"abstract":"<p><p>Nanoparticles capped with natural products can be a cost-effective alternative to treat drug-resistant nosocomial infections. Therefore, silibinin-loaded chitosan-capped silver nanoparticles (S-C@AgNPs) were synthesized to evaluate their antimicrobial and anti-inflammatory potential. The S-C@AgNPs plasmon peak was found at 430 nm and had a particle size distribution of about 130 nm with an average hydrodynamic diameter of 101.37 nm. The Scanning Electron Microscopy images showed the presence of sphere-shaped homogeneous nanoparticles. The Fourier Transform Infrared Spectroscopy analysis confirmed the loading of silibinin and chitosan on the AgNPs surface. The minimum inhibitory concentration of the S-C@AgNPs was reported between 3.12 μg/ml to 12.5 μg/ml and a minimum bactericidal concentration between 6.25 μg/ml to 25 μg/ml against drug-resistant nosocomial pathogens. Moreover, concentration-dependent significant inhibition of the biofilm formation was reported against <i>P. aeruginosa</i> (70.21%) <i>and K. pneumoniae</i> (71.02%) at 30 μg/ml, and the highest destruction of preformed biofilm was observed at 100 μg/ml against <i>P. aeruginosa</i> (89.74%) and <i>K. pneumoniae</i> (77.65%) as compared to individual bacterial control. Additionally, the fluorescence live/dead assay for bacterial biofilm confirmed that 100 µg/ml effectively inhibits the biofilm formed by these pathogens. S-C@AgNPs also showed anti-inflammatory activity, which is evident by the significant decrease in the proinflammatory cytokines and chemokines level in THP1 cells treated with LPS. This study concluded that S-C@AgNPs have potent antimicrobial, antibiofilm, and anti-inflammatory properties and could be a potential option for treating drug resistant nosocomial infections.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo evaluation of hyaluronic acid-polyethylene glycol amended PMMA bone cement for orthopaedic application. 用于骨科应用的透明质酸-聚乙二醇修正 PMMA 骨水泥的体内评估。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-30 DOI: 10.1080/09205063.2024.2359789
Seong-Su Park, Hansung Lim, Byong-Taek Lee
{"title":"<i>In vivo</i> evaluation of hyaluronic acid-polyethylene glycol amended PMMA bone cement for orthopaedic application.","authors":"Seong-Su Park, Hansung Lim, Byong-Taek Lee","doi":"10.1080/09205063.2024.2359789","DOIUrl":"10.1080/09205063.2024.2359789","url":null,"abstract":"<p><p>The utilization of polymethyl methacrylate (PMMA) bone cement is employed for the purpose of stabilizing fractured vertebral bodies. The existence of a mechanical imbalance in hard polymethylmethacrylate (PMMA) bone cement has the potential to increase the likelihood of a fracture occurring in the neighbouring vertebral body. In order to reduce potential difficulties, the primary goal of this study is to investigate the potential benefits of increasing PMMA bone cement's bioactivity and lowering its elastic modulus. The incorporation of a 10% volume fraction of hyaluronic acid (HyA) and polyethylene glycol (PEG) into the bone cement led to an improvement in the bioactivity and decreasing of elastic modulus of polymethylmethacrylate (PMMA). The integration of HyPE gel phase presents several advantages over pure PMMA bone cement, including enhanced setting parameters, improved degradability, and increased biocompatibility. The gel phase is additionally accountable for a reduction in the elastic modulus of polymethylmethacrylate (PMMA) bone cement. In addition, the existence of a porous structure that arises from the degradation of the HyPE gel phase delivers a significant amount of room, thereby enhancing the process of bone regeneration when implanted in the femur of rabbits. The utilization of HyPE in PMMA has been shown through comprehensive µ-CT analysis to enhance bone formation, thereby promoting osteointegration at the implantation site. Furthermore, the histological analysis demonstrated the existence of osteogenic activity in the PMMA polyethylene glycol supplemented with 10% HyA and 10% PEG after a 2-month period subsequent to implantation.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of nanobiosensor for therapeutic drug monitoring in personalized cancer treatment approach. 开发用于个性化癌症治疗方法中治疗药物监测的纳米生物传感器。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1080/09205063.2024.2356965
Cansu İlke Kuru, Deniz Sipahi, Ceren Aydoğan, Fulden Ulucan-Karnak, Sinan Akgöl
{"title":"Development of nanobiosensor for therapeutic drug monitoring in personalized cancer treatment approach.","authors":"Cansu İlke Kuru, Deniz Sipahi, Ceren Aydoğan, Fulden Ulucan-Karnak, Sinan Akgöl","doi":"10.1080/09205063.2024.2356965","DOIUrl":"10.1080/09205063.2024.2356965","url":null,"abstract":"<p><p>Docetaxel is one of the most effective and safe chemotherapy drugs according to the World Health Organization, but its clinical use has been discontinued due to its various side effects. To reduce these side effects, the amount of docetaxel drug should be kept at the most effective level, it should be monitored in body fluids. Due to the limitations of traditional analytical methods used for this purpose, such as expensive and low sensitivity, labor-intensive and time-consuming complex preliminary preparation, efficient methods are required for the determination of the docetaxel level in the body. The increasing demand for the development of personalized therapy has recently spurred significant research into biosensors for the detection of drugs and other chemical compounds. In this study, an electrochemical-based portable nanobiosensor system was developed for the rapid, low-cost, and sensitive determination of docetaxel. In this context, mg-p(HEMA)-IMEO nanoparticles to be used as nanobiosensor bioactive layer was synthesized, characterized, and docetaxel determination conditions were optimized. According to the results obtained, the developed nanobiosensor system can detect docetaxel with a sensitivity of 2.22 mg/mL in a wide calibration range of 0.25-10 mg/mL, in only 15 min, in mixed media such as commercially available artificial blood serum and urine. determined. We concluded that the developed nanobiosensor system can be successfully used in routine drug monitoring as a low-cost biomedical device capable of direct, rapid, and specific drug determination within the scope of personalized treatment, providing point-of-care testing.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing antibacterial properties of titanium implants through a novel Ag-TiO2-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach. 通过新型 Ag-TiO2-OTS 纳米复合涂层增强钛植入物的抗菌性能:关于抗药性杀灭-分解方法的综合研究。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-04-23 DOI: 10.1080/09205063.2024.2344332
Yu Jiang, Zhou Wan, Qi Liu, Xinxin Li, Bo Jiang, Mudan Guo, Pengjue Fan, Siyi Du, Doudou Xu, Chen Liu
{"title":"Enhancing antibacterial properties of titanium implants through a novel Ag-TiO<sub>2</sub>-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach.","authors":"Yu Jiang, Zhou Wan, Qi Liu, Xinxin Li, Bo Jiang, Mudan Guo, Pengjue Fan, Siyi Du, Doudou Xu, Chen Liu","doi":"10.1080/09205063.2024.2344332","DOIUrl":"10.1080/09205063.2024.2344332","url":null,"abstract":"<p><p>Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent biocompatibility and mechanical properties. However, bacterial adhesion and subsequent biofilm formation on implant surfaces pose a significant risk of postoperative infections and complications. Conventional surface modifications often lack long-lasting antibacterial efficacy, necessitating the development of novel coatings with enhanced antimicrobial properties. This study aims to develop a novel Ag-TiO<sub>2</sub>-OTS (Silver-Titanium dioxide-Octadecyltrichlorosilane, ATO) nanocomposite coating, through a chemical plating method. By employing a 'resist-killing-disintegrate' approach, the coating is designed to inhibit bacterial adhesion effectively, and facilitate pollutant removal with lasting effects. Characterization of the coatings was performed using spectroscopy, electron microscopy, and contact angle analysis. Antibacterial efficacy, quantitatively evaluated against <i>E. coli</i> and <i>S. aureus</i> over 168 h, showed a significant reduction in bacterial adhesion by 76.6% and 66.5% respectively, and bacterial removal rates were up to 83.8% and 73.3% in comparison to uncoated Ti-base material. Additionally, antibacterial assays indicated that the ratio of the Lifshitz-van der Waals apolar component to electron donor surface energy components significantly influences bacterial adhesion and removal, underscoring a tunable parameter for optimizing antibacterial surfaces. Biocompatibility assessments with the L929 cell line revealed that the ATO coatings exhibited excellent biocompatibility, with minimal cytotoxicity and no significant impact on cell proliferation or apoptosis. The ATO coatings provided a multi-functionality surface that not only resists bacterial colonization but also possesses self-cleaning capabilities, thereby marking a substantial advancement in the development of antibacterial coatings for medical implants.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The anticancer impact of folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles on human pancreatic, breast, lung, and colon cancers. 叶酸连接氧化锌装饰的牛血清白蛋白/丝裂霉素纳米粒子对人类胰腺癌、乳腺癌、肺癌和结肠癌的抗癌影响。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-05-29 DOI: 10.1080/09205063.2024.2356967
Farzaneh Sadeghzadeh, Parisa Golestani, Parisa Beyramabdi, Vahid Pouresmaeil, Hossein Hosseini, Masoud Homayouni Tabrizi
{"title":"The anticancer impact of folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles on human pancreatic, breast, lung, and colon cancers.","authors":"Farzaneh Sadeghzadeh, Parisa Golestani, Parisa Beyramabdi, Vahid Pouresmaeil, Hossein Hosseini, Masoud Homayouni Tabrizi","doi":"10.1080/09205063.2024.2356967","DOIUrl":"10.1080/09205063.2024.2356967","url":null,"abstract":"<p><p>In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats. 用于大鼠皮下植入的丝瓜基复合材料支架的体内表征。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-08-01 Epub Date: 2024-07-05 DOI: 10.1080/09205063.2024.2363080
Shravanya Gundu, Ajay Kumar Sahi, Pooja Kumari, Chandrakant Singh Tekam, Ishita Allu, Richa Singh, Sanjeev Kumar Mahto
{"title":"In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats.","authors":"Shravanya Gundu, Ajay Kumar Sahi, Pooja Kumari, Chandrakant Singh Tekam, Ishita Allu, Richa Singh, Sanjeev Kumar Mahto","doi":"10.1080/09205063.2024.2363080","DOIUrl":"10.1080/09205063.2024.2363080","url":null,"abstract":"<p><p>Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. <i>In vivo</i> studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the <i>in vivo</i> biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of itraconazole ocular delivery system using β-cyclodextrin complexation incorporated into dissolving microneedles for potential improvement treatment of fungal keratitis. 利用β-环糊精复合物开发伊曲康唑眼部给药系统,并将其纳入可溶解微针,有望改善真菌性角膜炎的治疗。
IF 3.6 4区 医学
Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-07-31 DOI: 10.1080/09205063.2024.2380129
Rasma Adelia Putri, Cindy Kristina Enggi, Sulistiawati Sulistiawati, Habiburrahim Burhanuddin, Israini Wiyulanda Iskandar, Rizki Rachmad Saputra, Latifah Rahman, Sartini Sartini, Yusnita Rifai, Muhammad Aswad, Andi Dian Permana
{"title":"Development of itraconazole ocular delivery system using β-cyclodextrin complexation incorporated into dissolving microneedles for potential improvement treatment of fungal keratitis.","authors":"Rasma Adelia Putri, Cindy Kristina Enggi, Sulistiawati Sulistiawati, Habiburrahim Burhanuddin, Israini Wiyulanda Iskandar, Rizki Rachmad Saputra, Latifah Rahman, Sartini Sartini, Yusnita Rifai, Muhammad Aswad, Andi Dian Permana","doi":"10.1080/09205063.2024.2380129","DOIUrl":"https://doi.org/10.1080/09205063.2024.2380129","url":null,"abstract":"<p><p>Itraconazole (ITZ) is one of the broad-spectrum antifungal agents for treating fungal keratitis. In clinical use, ITZ has problems related to its poor solubility in water, which results in low bioavailability when administered orally. To resolve the issue, we formulated ITZ into the inclusion complex (ITZ-IC) system using β-cyclodextrin (β-CD), which can potentially increase the solubility and bioavailability of ITZ. The molecular docking study has confirmed that the binding energy of ITZ with the β-CD was -5.0 kcal/mol, indicating a stable conformation of the prepared inclusion complex. Moreover, this system demonstrated that the inclusion complex could significantly increase the solubility of ITZ up to 4-fold compared to the pure drug. Furthermore, an ocular drug delivery system was developed through dissolving microneedle (DMN) using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as polymeric substances. The evaluation results of DMN inclusion complexes (ITZ-IC-DMN) showed excellent mechanical strength and insertion ability. In addition, ITZ-IC-DMN can dissolve rapidly upon application. The <i>ex vivo</i> permeation study revealed that 75.71% (equivalent to 3.79 ± 0.21 mg) of ITZ was permeated through the porcine cornea after 24 h. Essentially, ITZ-IC-DMN exhibited no signs of irritation in the HET-CAM study, indicating its safety for application. In conclusion, this study has successfully developed an inclusion complex formulation containing ITZ using β-CD in the DMN system. This approach holds promise for enhancing the solubility and bioavailability of ITZ through ocular administration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信