Whitlockite nanoparticles incorporated chitin-poly(dioxanone) composite scaffold for alveolar bone regeneration.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Kavipriya Murugaiyan, Arthi Chandramouli, Jayakumar Rangasamy
{"title":"Whitlockite nanoparticles incorporated chitin-poly(dioxanone) composite scaffold for alveolar bone regeneration.","authors":"Kavipriya Murugaiyan, Arthi Chandramouli, Jayakumar Rangasamy","doi":"10.1080/09205063.2025.2460377","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of alveolar bone due to periodontitis is prevalent among a wide range of population and is a major concern for oral health. Treatment of alveolar bone loss is aimed based on the repair of the periodontium as well as type of defect that has been formed. Nanocomposite based hydrogel and scaffolds for alveolar bone regeneration has gained significant attention due to their favourable properties such as stability, biocompatibility and enhanced regeneration. Chitin has been used for decades in biomedical applications owing to its good biological activity, biocompatibility and biodegradability. The addition of synthetic polymer such as polydiaxanone into chitin alters the degradation properties and also enhances the biological properties such as osteogenesis. The addition of bioceramic, whitlockite nanoparticles induces mineralization and osteogenesis. Thus, we developed a composite scaffold (Ch-PDO-nWH) using chitin, polydioxanone and whitlockite nanoparticles, a magnesium based bioceramic. The prepared Ch-PDO-nWH composite scaffold is porous in nature, with swelling property and controlled degradation. The scaffold was tested for its biocompatibility using dental follicle stem cells (DFSCs) which showed improved biocompatibility, biomineralization and also stimulated the expression of osteogenic markers such as RUNX2 and OPN thus ultimately aiding in bone regeneration.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1677-1693"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2460377","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Loss of alveolar bone due to periodontitis is prevalent among a wide range of population and is a major concern for oral health. Treatment of alveolar bone loss is aimed based on the repair of the periodontium as well as type of defect that has been formed. Nanocomposite based hydrogel and scaffolds for alveolar bone regeneration has gained significant attention due to their favourable properties such as stability, biocompatibility and enhanced regeneration. Chitin has been used for decades in biomedical applications owing to its good biological activity, biocompatibility and biodegradability. The addition of synthetic polymer such as polydiaxanone into chitin alters the degradation properties and also enhances the biological properties such as osteogenesis. The addition of bioceramic, whitlockite nanoparticles induces mineralization and osteogenesis. Thus, we developed a composite scaffold (Ch-PDO-nWH) using chitin, polydioxanone and whitlockite nanoparticles, a magnesium based bioceramic. The prepared Ch-PDO-nWH composite scaffold is porous in nature, with swelling property and controlled degradation. The scaffold was tested for its biocompatibility using dental follicle stem cells (DFSCs) which showed improved biocompatibility, biomineralization and also stimulated the expression of osteogenic markers such as RUNX2 and OPN thus ultimately aiding in bone regeneration.

Whitlockite纳米颗粒结合几丁质-聚二恶酮复合支架用于牙槽骨再生。
牙周炎引起的牙槽骨丢失在广泛的人群中普遍存在,是口腔健康的一个主要问题。牙槽骨丢失的治疗是基于牙周组织的修复以及已经形成的缺损类型。纳米复合材料水凝胶和支架由于其良好的稳定性、生物相容性和增强的再生能力而受到广泛关注。几丁质具有良好的生物活性、生物相容性和生物降解性,已在生物医学领域应用了几十年。在几丁质中加入合成聚合物,如聚二axanone,改变了几丁质的降解性能,也提高了几丁质的生物性能,如成骨。添加生物陶瓷、白脱石纳米颗粒可诱导矿化和成骨。因此,我们开发了一种复合支架(Ch-PDO-nWH),使用几丁质、聚二氧环酮和惠特洛克石纳米颗粒,一种镁基生物陶瓷。制备的Ch-PDO-nWH复合支架具有多孔性、溶胀性和可降解性。使用牙滤泡干细胞(DFSCs)对支架进行了生物相容性测试,结果显示支架的生物相容性和生物矿化得到了改善,并刺激了RUNX2和OPN等成骨标志物的表达,最终有助于骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信