{"title":"Research progress on spinning methods of recombinant spidroins.","authors":"Tingting Zhang, Mengke Zhou","doi":"10.1080/09205063.2025.2534689","DOIUrl":null,"url":null,"abstract":"<p><p>Spider silk is a natural biomaterial that has attracted considerable attention because of its exceptional physical and chemical properties. Developing fiber materials that combine high strength and toughness remains a significant challenge, as increasing fiber strength often reduces toughness. However, spider silk achieves an optimal balance of these properties through gelation and stretching of its spinning solution. This remarkable feature has inspired extensive efforts to produce artificial fibers that mimic natural spider silk's materials, structures, and spinning mechanisms. For decades, researchers have focused on artificially spun recombinant spidroins to replicate the extraordinary mechanical properties of natural spider silk. This paper investigates the relationship between the structure and function of spidroins. It reviews the primary methods for synthesizing spider silk fibers, emphasizing their advantages and limitations. These insights provide a theoretical foundation for the design of artificial protein fibers and spinning equipment. This study addresses the challenges and unresolved issues in the current research. It proposes future directions, advancing our understanding of spidroins fiber production and establishing a foundation for further studies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-25"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2534689","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spider silk is a natural biomaterial that has attracted considerable attention because of its exceptional physical and chemical properties. Developing fiber materials that combine high strength and toughness remains a significant challenge, as increasing fiber strength often reduces toughness. However, spider silk achieves an optimal balance of these properties through gelation and stretching of its spinning solution. This remarkable feature has inspired extensive efforts to produce artificial fibers that mimic natural spider silk's materials, structures, and spinning mechanisms. For decades, researchers have focused on artificially spun recombinant spidroins to replicate the extraordinary mechanical properties of natural spider silk. This paper investigates the relationship between the structure and function of spidroins. It reviews the primary methods for synthesizing spider silk fibers, emphasizing their advantages and limitations. These insights provide a theoretical foundation for the design of artificial protein fibers and spinning equipment. This study addresses the challenges and unresolved issues in the current research. It proposes future directions, advancing our understanding of spidroins fiber production and establishing a foundation for further studies.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.