Dina Atta, Ahmed M. Abou-Shanab, Samaa Samir Kamar, Mariam Waleed Soliman, Shireen Magdy, Nagwa El-Badri
{"title":"Amniotic Membrane-Derived Extracellular Matrix for Developing a Cost-Effective Xenofree Hepatocellular Carcinoma Organoid Model","authors":"Dina Atta, Ahmed M. Abou-Shanab, Samaa Samir Kamar, Mariam Waleed Soliman, Shireen Magdy, Nagwa El-Badri","doi":"10.1002/jbm.a.37882","DOIUrl":"https://doi.org/10.1002/jbm.a.37882","url":null,"abstract":"<div>\u0000 \u0000 <p>Current limitations in the treatment of hepatocellular carcinoma (HCC) include tumor recurrence, chemoresistance, and severe side effects, all of which call for novel cancer models that better represent the tumor microenvironment (TME). 3D organoids hold promise due to their increased relevance to the TME hallmarks. Herein, we aim to establish an HCC organoid model that mimics the HCC microenvironment and its metabolic interactome. The organoid comprises a decellularized human amniotic membrane (dAM) as a biomimetic matrix, Huh-7 cell line, bone marrow mesenchymal stromal cells (BM-MSC), and human umbilical vein endothelial cell-conditioned medium (HUVEC-CM). The structure integrity of the HCC organoid was monitored using H&E staining at 7, 14, and 21 days and transmission electron microscopy (TEM) and scanning electron microscopy (SEM) at 21 days. The established organoid model maintained its viability over 21 days as tested by propidium iodide (PI) fluorescence staining, MTT, upregulated expression of proliferating cell nuclear antigen (PCNA), and alpha-fetoprotein (AFP). The expression of vascular endothelial growth factor (VEGF) in the HCC organoid induced a neo-angiogenic response in ovo. Metabolic reprogramming in the HCC organoid showed a shift toward glycolysis as indicated by promoted glucose consumption, upregulated lactate production, and reduced cellular pyruvate concentration. Oxidative phosphorylation was suppressed as indicated by reduced reactive oxygen species (ROS), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and halted urea cycle progression. The dataset shows that the dAM may hold a promise for its use as extracellular matrix (ECM) source for HCC organoid models, by replicating the HCC microenvironment and metabolic signature, thus holding a promise for developing targeted therapeutic strategies.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the Effect of Thickener Concentrations on the Corrosion Behavior of Pure Mg","authors":"Manas Ranjan Sahu, Akiko Yamamoto","doi":"10.1002/jbm.a.37878","DOIUrl":"10.1002/jbm.a.37878","url":null,"abstract":"<p>Magnesium (Mg) and its alloys are promising biodegradable implant materials due to their biocompatibility and ease of corrosion in physiological environment. In the tissue, diffusion of ions and gas released by Mg corrosion reaction will be interfered by extracellular matrix and cells, which may retard the corrosion reaction. Therefore, in the present study, we developed the in vitro model tissue with different diffusion rates to understand the effect of diffusion on the Mg corrosion. A thickener called gellan gum was added to the cell culture medium at appropriate concentrations to simulate tissues with different diffusion rates. The immersion study up to 28 days and the electrochemical studies were performed to evaluate the Mg corrosion behavior. The pure Mg specimens without thickener showed the highest corrosion rate in both immersion and electrochemical tests. The highest amount of insoluble salt layer with the lowest Mg and highest O concentrations were deposited on the specimen surface without thickener. The microfocus X-ray computed tomography (μCT) analysis confirmed these findings, showing the lowest remaining volume for specimens without thickener. There is an impediment of ion diffusion in the model tissue with increased thickener concentrations, thereby decreasing the corrosion rate. The corrosion rate for 0.2–0.3 wt. % thickener matched in the range of reported in vivo results. Hence, this model proves to be an effective tool for investigating biodegradation and understanding the mechanisms and controlling factors of this phenomenon.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter W. Kurtz, Hwaran Lee, Annsley Mace, Charley Goodwin, Jeremy Gilbert
{"title":"Low-Energy Electron Beam Modification of Metallic Biomaterial Surfaces: Oxygen and Silicon-Rich Amorphous Carbon as a Wear-Resistant Coating","authors":"Peter W. Kurtz, Hwaran Lee, Annsley Mace, Charley Goodwin, Jeremy Gilbert","doi":"10.1002/jbm.a.37849","DOIUrl":"10.1002/jbm.a.37849","url":null,"abstract":"<p>Metallic biomaterials, such as cobalt chrome molybdenum (CoCrMo), Ti-6Al-4V, and 316L stainless steel are commonly used in orthopedic implant devices. Damage modes such as corrosion and wear are associated with the use of these alloys. One solution to limit wear and corrosion damage is to apply a surface coating to the medical device. In this study, using the low-energy electron beam (LEEB) of scanning electron microscopy (SEM), we induced a highly scratch-resistant oxygen and silicon-rich amorphous carbon film to grow on each of the above metallic biomaterials. LEEB interaction with adventitious surface carbon, silicone, and oxygen deposited on the above three alloys resulted in the layered-deposition formation (LEEB-LD) of a surface coating. Coating chemistry, morphology, and nano-scratch wear properties on each of the three alloys were characterized using atomic force microscopy (AFM) scratch testing and SEM/Energy dispersive spectroscopy (EDS) analysis. We hypothesized that LEEB-LD coatings could be deposited on these three metallic biomaterials with improved tribological properties than the underlying metal substrate. First, we generated coatings on all three biomaterials and documented the coating morphology (thickness and heterogeneity) and chemistry as a function of alloy, exposure time, and scan rate with coating thicknesses generated between 5 and 50 nm after 60 min of treatment, with each factor affecting the thickness. EDS maps showed high amounts of carbon, oxygen, and silicon in the modified surface which depended on the alloy (e.g., CoCrMo and SS had similar compositions while Ti had higher oxygen in the coatings). Coated and uncoated surfaces were then subjected to diamond scratch testing in an AFM at increasing force until the coating delaminated from the surface. Scratch-depth versus load and nominal Hertzian stress were plotted for both the uncoated and coated surfaces. We found that scratch depths were 40%, 75%, and 38% smaller on CoCrMo, Ti, and SS coatings, respectively, at the peak contact stresses tested (⍺ < 0.05), indicating higher hardness and wear resistance for the coatings. These results support the hypothesis that controlled thickness LEEB-LD oxygen and silicon-rich amorphous carbon coatings can be systematically generated using low-power electron beams and that these coatings have increased tribological (scratch-resistance) properties compared to the substrate metal.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37849","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid Metal-Based Conductive Nerve Guidance Conduit Combined With Electrical Stimulation Boosts Peripheral Nerve Repair","authors":"Yujie Zhu, Chenchen Song, Dongdong Yao, Fangyu Qiao, Yang Zou, Yonggang Lv","doi":"10.1002/jbm.a.37880","DOIUrl":"10.1002/jbm.a.37880","url":null,"abstract":"<div>\u0000 \u0000 <p>The combination of nerve guide conduits (NGCs) and electrical stimulation (ES) is an effective treatment for peripheral nerve injury (PNI). Flexible conductive materials with mechanical properties similar to those of biological tissues have been shown to have better long-term biointegration and functionality than rigid conductive materials. In this study, liquid metal (LM)-based conductive polycaprolactone/gelatin/polypyrrole/LM (PCL/Gel/PPy/LM, PGPL) NGC was combined with exogenous ES to repair PNI. PGPL membranes had good hydrophilicity, degradability, and mechanical properties, and its conductivity reached 0.66 ± 0.02 S/m. In vitro studies showed that the combination of PGPL membranes and ES (2 Hz, 100 mV/cm, 30 min/d) could significantly increase the expression of neuromarkers and had a better pro-neural differentiation effect. In vivo studies demonstrated that PGPL NGCs in combination with ES (2 Hz, 200 mV/mm, 30 min/d) could effectively promote morphological reconstruction and functional recovery of the sciatic nerve in rats. At 3 months post-surgery, PGPL NGCs combined with ES restored the nerve conduction velocity to 73.85% ± 5.45% of the normal value. The LM-based NGCs prepared in this study could effectively repair long sciatic nerve defects, which may further expand the application of LM in the field of nerve tissue engineering.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of 3D-Printed Polycaprolactone Scaffold With Powdery/Smooth Micromorphology on Local Immune Environments","authors":"Lan Hou, Zijie Meng, Jiawei Zhang, Yangchi Jiao, Kexin Chang, Jiankang He, Juliang Zhang","doi":"10.1002/jbm.a.37869","DOIUrl":"10.1002/jbm.a.37869","url":null,"abstract":"<div>\u0000 \u0000 <p>Selective laser sintering (SLS) has become a viable approach for producing biodegradable medical implants in various clinical applications. The resulting scaffolds typically exhibit a powdery microstructure, which may potentially impact the behavior of immune cells and immune responses in surrounding tissues. However, limited research has been conducted to understand the effect of surface morphology in SLS-fabricated scaffolds on local immune environments. This study aims to compare the effect of SLS-fabricated polycaprolactone (PCL) scaffolds with powdery and smooth surface morphologies on immune-related biological responses. Compared with those on the powdery micromorphology, RAW264.7 macrophages displayed greater dispersion and adopted a spread and elongated morphology on the scaffolds with smooth surface. The expression levels of arginase-1 and CD206 were found to be upregulated in macrophages adhering to the PCL scaffolds with smooth surface, accompanied by an augmented secretion of anti-inflammatory cytokines TGF-β and IL-10. Conversely, there was a decrease in the secretion of pro-inflammatory cytokines TNF-α and IL-12. When implanted in vivo, the SLS-derived scaffolds were completely covered by host tissues, Withing increased collagen deposition, indicating good histocompatibility. At 1-week post-implantation, there was a significantly higher presence of M2-type macrophages surrounding the scaffold compared to M1 macrophages in both groups. By 3 weeks post-implantation, the overall level of macrophages had decreased in both groups. However, a significant higher level of M1 macrophages were observed in the powdery scaffold group. At the same time, the number of neutrophils around the powder scaffold increased significantly, demonstrating long-term local inflammatory responses. The results suggested that post-treated scaffolds with smooth surfaces can effectively reduce local inflammation, making them more suitable for clinical implantation.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Biodegradation and Biocompatibility of Vascular Grafts Through Oriented Core-Shell Fibrous Structure and Incorporation of Sodium Tanshinone IIA Sulfonate","authors":"Yunhuan Li, Tao Yang, Kuihua Zhang, Chengyu Zou, Keqing Hou, Anlin Yin","doi":"10.1002/jbm.a.37877","DOIUrl":"10.1002/jbm.a.37877","url":null,"abstract":"<div>\u0000 \u0000 <p>Microstructure and biological activity have been pivotal factors in the modification of vascular grafts. Equally crucial, however, are degradation behavior and mechanical stability, both of which are key to long-term success of grafts. To optimize these properties, we prepared oriented fiber membranes with core-shell structures through coaxial electrospinning, incorporating varying concentrations of sodium tanshinone IIA sulfonate (STS). In this design, poly-ethylene oxide (PEO)/STS served as the core layer, while poly-L-lactide-co-caprolactone (PLCL) formed the shell. Our findings revealed that both random and oriented fiber membranes exhibited excellent mechanical properties. Notably, compared to random fiber membranes, the oriented counterparts showed enhanced hydrophilicity and a tunable degradation rate. Furthermore, the sustained release of STS from the membranes inhibited platelet adhesion and significantly promote cell diffusion, growth, and proliferation. Importantly, the oriented fiber membranes loaded with STS were able to induce a highly organized cell arrangement and upregulate the expression of CD144 and vWF in endothelial cells. These promising findings suggest that oriented core-shell fiber membranes loaded with PEO/STS could offer valuable insights into vascular graft design and hold potential for further exploration in animal studies.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bryan G. Schellberg, Ryan A. Koppes, Abigail N. Koppes
{"title":"Recent Advances in Integrated Organ-Chip Sensing Toward Robust and User-Friendly Systems","authors":"Bryan G. Schellberg, Ryan A. Koppes, Abigail N. Koppes","doi":"10.1002/jbm.a.37876","DOIUrl":"10.1002/jbm.a.37876","url":null,"abstract":"<div>\u0000 \u0000 <p>Organs-on-a-chip (OOC) are an emergent technology that bridge the gap between current in vitro and in vivo models used to inform drug discovery and investigate disease pathophysiology. These systems offer improved bio-relevance and controlled complexity through the integration of physical and/or chemical stimuli matched to physiologically relevant conditions. Although significant advancements have been made toward recreating organ-specific physiology on chip, the methods available to study structure and function of the cell microenvironment are still limited. Established analysis approaches, including fluorescence microscopy, rely on laborious offline workflows that yield limited time-point data. As the OOC field continues to evolve, there is a unique opportunity to engineer improved characterization methods into organ-chip devices. This review provides an overview of current integrated sensing approaches that address current limitations and enable real-time readout of relevant physiological parameters in OOC.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Alejandra Baldión, Carlos Aldemar Díaz, Diego Enrique Betancourt
{"title":"Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast–Like Cells","authors":"Paula Alejandra Baldión, Carlos Aldemar Díaz, Diego Enrique Betancourt","doi":"10.1002/jbm.a.37872","DOIUrl":"10.1002/jbm.a.37872","url":null,"abstract":"<div>\u0000 \u0000 <p>The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin–dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast–like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2′,7′-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, <i>p ≤</i> 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (<i>p</i> < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (<i>p</i> = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative Hybrid Nanocarriers of GnRH Peptide-Modified Chitosan-Coated Lipid Nanoparticles as a Targeted Chemotherapy for Reproductive-Related Cancers","authors":"Phichaporn Bunwatcharaphansakun, Nisakorn Yodsanit, Wisawat Keaswejjareansuk, Pattarapond Gonil, Sudthirak Wongkhieo, Angkana Jantimaporn, Warut Kengkittipat, Somrudee Kaewmalun, Nuttawat Sawangrat, Teerapong Yata, Warayuth Sajomsang, Mattaka Khongkow, Katawut Namdee","doi":"10.1002/jbm.a.37843","DOIUrl":"10.1002/jbm.a.37843","url":null,"abstract":"<div>\u0000 \u0000 <p>Cancer stands as a primary contributor to worldwide mortality, especially reproductive-related cancers (e.g., breast/cervical cancers among females and prostate cancer among males). Chemotherapy is the most common systemic therapy for cancer, but its adverse effects are concerning. Developing effective and new strategies against cancer is necessary to increase their efficacy and minimize their adverse effect. In this work, the novel core-shell structure of lipid nanoparticle (LNP) was fabricated via a high-throughput microfluidic for chemotherapy drug delivery. A gonadotropin-releasing hormone (GnRH), a targeting moiety for the overexpressed GnRH receptors (GnRHR) in cancer cells, was conjugated on chitosan (GnRH-CS) as a shell and used to modify the surface of LNP with doxorubicin loading to form a complex of LNP-dox-GnRH (≤ 150 nm, PDI ~0.2). The modified surface enhances the binding affinity of the LNP to the breast and prostate cancer cells. For an in vitro study, we found that LNP-dox-GnRH can specifically target the GnRHR-overexpressing cancer cells (i.e., MCF-7 and PC-3) compared with non-targeted LNP-dox. Conversely, there was no difference in the targetability between LNP-dox-GnRHR and non-targeted LNP to MDA-MB-436, a low GnRHR-expressing cancer cell. Furthermore, the enhanced anticancer activity of LNP-dox-GnRH was observed in both monolayer and spheroid cell cultures. This study highlights the advantages of easy customization of payloads and targeting peptides, requiring only a simple coating process that doesn't need specialized expertise. Its flexibility and efficiency enhance the potential for precision therapies, making it ideal for translational applications in treating reproductive-related cancers, GnRH-associated diseases, and other conditions.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 2","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polydopamine-Induced BMP7-Poly (Lactic-Co-Glycolic Acid)-Nanoparticle Coating Facilitates Osteogenesis in Porous Tantalum Scaffolds","authors":"Yu Ao, Dianming Jiang","doi":"10.1002/jbm.a.37835","DOIUrl":"10.1002/jbm.a.37835","url":null,"abstract":"<div>\u0000 \u0000 <p>Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects. Porous tantalum (PT) scaffolds have shown beneficial clinical effects in the repair of bone defects, surface modification of PT to induce osteogenic differentiation of mesenchymal stem cells (MSC) is the key to optimizing this material. Poly (lactic-co-glycolic acid) nanoparticle (PLGA NPs) encapsulating bone morphogenetic protein 7 (BMP7) (BPNPs) was prepared by a double emulsion (water/oil/water [W/O/W]) method and adhered on polydopamine (PDA)-coated PT (PPT) that was prepared by biomimetic method to prepare BPNPs-coated PPT (BPPT). The successful preparation of BPPT was monitored by scanning electron microscopy (SEM) and energy spectrum. Murine calvarial preosteoblasts (MC3T3-E1) cells were co-cultured with BPPT, vitro experiments showed that BPPT promoted cell proliferation and osteogenic differentiation. BPPT was further implanted into the bone defect of the distal femoral epiphysis of the rabbit. At 4 weeks postoperatively, in the BPPT group, high-resolution CT reconstruction indicated that bone volume/total volume (BV/TV) was near 50%, and the hard tissue section indicated that the depth of new bone ingrowth into the scaffolds was nearly 2 mm. The immunofluorescence staining of bone tissue around the bone defects indicated that the expression of osteogenic-related proteins was higher in the BPPT group than the other groups. Taken together, our results suggest that BPPT promoted early osteointegration, which may provide a novel approach for the clinical treatment of bone defects.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}