{"title":"Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering.","authors":"Ingrida Pauliukaitytė,Darius Čiužas,Edvinas Krugly,Odeta Baniukaitienė,Mindaugas Bulota,Vilma Petrikaitė,Dainius Martuzevičius","doi":"10.1002/jbm.a.37798","DOIUrl":"https://doi.org/10.1002/jbm.a.37798","url":null,"abstract":"Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"3 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High hydrostatic pressure treatment for advanced tissue grafts in reconstructive head and neck surgery.","authors":"Friederike Kalle,Valentin Paul Stadler,Julia Kristin Brach,Vivica Freiin Grote,Christopher Pohl,Karoline Schulz,Michael Seidenstuecker,Anika Jonitz-Heincke,Rainer Bader,Robert Mlynski,Daniel Strüder","doi":"10.1002/jbm.a.37791","DOIUrl":"https://doi.org/10.1002/jbm.a.37791","url":null,"abstract":"The increasing importance of regenerative medicine has resulted in a growing need for advanced tissue replacement materials in head and neck surgery. Allo- and xenogenic graft processing is often time-consuming and can deteriorate the extracellular matrix (ECM). High hydrostatic pressure (HHP)-treatment could allow specific devitalization while retaining the essential properties of the ECM. Porcine connective tissue and cartilage were HHP-treated at 100-400 MPa for 10 min. Structural modifications following HHP-exposure were examined using electron microscopy, while devitalization was assessed through metabolism and cell death analyses. Furthermore, ECM alterations and decellularization were evaluated by histology, biomechanical testing, and DNA content analysis. Additionally, the inflammatory potential of HHP-treated tissue was evaluated in vivo using a dorsal skinfold chamber in a mouse model. The devitalization effects of HHP were dose-dependent, with a threshold identified at 200 MPa for fibroblasts and chondrocytes. At this pressure level, HHP induced structural alterations in cells, with a shift toward late-stage apoptosis. HHP-treatment preserved ECM structure and biomechanical properties, but did not remove cell debris from the tissue. This study observed a pressure-dependent increase of markers suggesting the occurrence of immunogenic cell death. In vivo investigations revealed an absence of inflammatory responses to HHP-treated tissue, indicating a favorable biological response to HHP. In conclusion, application of HHP devitalizes fibroblasts and chondrocytes at 200 MPa while retaining the essential properties of the ECM. Prospectively, HHP may simplify the preparation of allo- and xenogenic tissue replacement materials and increase the availability of grafts in head and neck surgery.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"55 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Iorio,Mohammad El Khatib,Natalie Wöltinger,Maura Turriani,Oriana Di Giacinto,Annunziata Mauro,Valentina Russo,Barbara Barboni,Aldo R Boccaccini
{"title":"Electrospun poly(ε-caprolactone)/poly(glycerol sebacate) aligned fibers fabricated with benign solvents for tendon tissue engineering.","authors":"Francesco Iorio,Mohammad El Khatib,Natalie Wöltinger,Maura Turriani,Oriana Di Giacinto,Annunziata Mauro,Valentina Russo,Barbara Barboni,Aldo R Boccaccini","doi":"10.1002/jbm.a.37794","DOIUrl":"https://doi.org/10.1002/jbm.a.37794","url":null,"abstract":"The electrospinning technique is a commonly employed approach to fabricate fibers intended for various tissue engineering applications. The aim of this study is to develop a novel strategy for tendon repair through the use of aligned poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS) fibers fabricated in benign solvents, and further explore the potential application of PGS in tendon tissue engineering (TTE). The fibers were characterized for their morphological and physicochemical properties; amniotic epithelial stem cells (AECs) were used to assess the fibers teno-inductive and immunomodulatory potential due to their ability to teno-differentiate undergoing first a stepwise epithelial to mesenchymal transition, and due to their documented therapeutic role in tendon regeneration. The addition of PGS to PCL improved the spinnability of the polymer solution, as well as the uniformity and directionality of the so-obtained fibers. The mechanical properties were in the range of most TTE applications, specifically in the case of PCL/PGS 4:1 and 2:1 ratios. Compared to PCL alone, the same ratios also allowed a better AECs infiltration and growth over 7 days of culture, and triggered the activation of tendon-related genes (SCX, COL1, TNMD) and the expression of tenomodulin (TNMD) at the protein level. Concerning the immunomodulatory properties, both PCL and PCL/PGS fibers negatively affected the immunomodulatory profile of AECs, up-regulating both anti-inflammatory (IL-10) and pro-inflammatory (IL-12) cytokines over 7 days of culture. Overall, PCL/PGS 2:1 fibers fabricated with benign solvents proved to be the most suitable composition for TTE application based on their topographical cues, mechanical properties, biocompatibility, and teno-inductive properties.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"17 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilaha Isali,Phillip McClellan,Thomas R Wong,Sara Hijaz,David R Fletcher,Guiming Liu,Tracey L Bonfield,James M Anderson,Adonis Hijaz,Ozan Akkus
{"title":"Differential effects of macrophage subtype-specific cytokines on fibroblast proliferation and endothelial cell function in co-culture system.","authors":"Ilaha Isali,Phillip McClellan,Thomas R Wong,Sara Hijaz,David R Fletcher,Guiming Liu,Tracey L Bonfield,James M Anderson,Adonis Hijaz,Ozan Akkus","doi":"10.1002/jbm.a.37799","DOIUrl":"https://doi.org/10.1002/jbm.a.37799","url":null,"abstract":"Macrophages are involved in several critical activities associated with tissue repair and regeneration. Current approaches in regenerative medicine are focusing on leveraging the innate immune response to accelerate tissue regeneration and improve long-term healing outcomes. Of particular interest in this regard are the currently known, four main M2 macrophage subtypes: M2interleukin (IL)-4,IL-13, M2IC, M2IL-10, M2non-selective adenosine receptor agonists (NECA) (M2IL-4,IL-13 → M2NECA). In this study, rat bone marrow-derived macrophages (M0) were polarized to each of the four subtypes M2IL-4,IL-13 → M2NECA and cultured for 72 h in vitro. Luminex assay results highlighted increased production of tissue inhibitor of metalloproteinases-1 (TIMP-1) for M2IL-4,IL-13, higher amounts of transforming growth factor-beta 1 (TGF-β1) for M2IL-10, and elevated vascular endothelial growth factor A (VEGF-A) from M2NECA. Co-culture experiments performed with M2IL-10 macrophages and L929 fibroblasts highlighted the increased production of soluble collagen within the media as well as higher amounts of collagen in the extracellular matrix. Human umbilical vein endothelial cells (HUVECs) were co-cultured with M2NECA macrophages, which demonstrated an increase in intercellular adhesion molecule (ICAM) and platelet endothelial cell adhesion molecule (PECAM), as well as increased formation of endothelial tubes. The findings of this study emphasize a critical demand for further characterization and analyses of distinct M2 subtypes and careful selection of specific macrophage populations for regeneration of specific tissue types. The current, broad classification of \"M2\" may be sufficient in many general tissue engineering applications, but, as conditions are constantly in flux within the microenvironment in vivo, a higher degree of specificity and control over the initial M2 subtype could result in more consistent long-term outcomes where macrophages are utilized as part of an overall regenerative strategy.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"41 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Navarro, Miguel Barrera, Alberto Olmo, Yadir Torres
{"title":"Electrical impedance characterization and modelling of Ti‐Β implants","authors":"Paula Navarro, Miguel Barrera, Alberto Olmo, Yadir Torres","doi":"10.1002/jbm.a.37797","DOIUrl":"https://doi.org/10.1002/jbm.a.37797","url":null,"abstract":"Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β‐Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non‐destructive measurement techniques that allow for the semi‐quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real‐time characterization of Titanium implants, in an efficient and non‐invasive way.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"30 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Povilas Barasa, Egidijus Simoliunas, Aivaras Grybas, Ramune Zilinskaite‐Tamasauske, Darius Dasevicius, Milda Alksne, Ieva Rinkunaite, Andrius Buivydas, Emilija Baltrukonyte, Rimgaile Tamulyte, Ashwinipriyadarshini Megur, Gilvydas Verkauskas, Daiva Baltriukiene, Virginija Bukelskiene
{"title":"Development of multilayered artificial urethra graft for urethroplasty","authors":"Povilas Barasa, Egidijus Simoliunas, Aivaras Grybas, Ramune Zilinskaite‐Tamasauske, Darius Dasevicius, Milda Alksne, Ieva Rinkunaite, Andrius Buivydas, Emilija Baltrukonyte, Rimgaile Tamulyte, Ashwinipriyadarshini Megur, Gilvydas Verkauskas, Daiva Baltriukiene, Virginija Bukelskiene","doi":"10.1002/jbm.a.37796","DOIUrl":"https://doi.org/10.1002/jbm.a.37796","url":null,"abstract":"To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin‐silk fibroin (GelMA‐SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA‐SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell‐laden tissue. The constructs were then reinforced with polycaprolactone‐polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell‐laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"43 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Zheng, Ruilin Chen, Jie Hao, Yang Yang, Shaohu Xu, Feiyu Zhang, Feng Zhang, Yu Yao
{"title":"Design and preparation of hydrogel microspheres for spinal cord injury repair","authors":"Jian Zheng, Ruilin Chen, Jie Hao, Yang Yang, Shaohu Xu, Feiyu Zhang, Feng Zhang, Yu Yao","doi":"10.1002/jbm.a.37788","DOIUrl":"10.1002/jbm.a.37788","url":null,"abstract":"<p>A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2358-2371"},"PeriodicalIF":3.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bikram Adhikari, Michael A. Stager, Elise G. Collins, Kristine M. Fischenich, Jesutomisin Olusoji, Ana Ferreira Ruble, Karin A. Payne, Melissa D. Krebs
{"title":"Sustained release of MAPK14-targeting siRNA from polyelectrolyte complex hydrogels mitigates MSC osteogenesis in vitro with potential application in growth plate injury","authors":"Bikram Adhikari, Michael A. Stager, Elise G. Collins, Kristine M. Fischenich, Jesutomisin Olusoji, Ana Ferreira Ruble, Karin A. Payne, Melissa D. Krebs","doi":"10.1002/jbm.a.37784","DOIUrl":"10.1002/jbm.a.37784","url":null,"abstract":"<p>The growth plate is a cartilage structure at the end of long bones which mediates growth in children. When fractured, the formation of bony repair tissue known as a “bony bar” can occur and cause limb deformities. There are currently no effective clinical solutions for the prevention of the bony bar formation or regeneration of healthy growth plate cartilage after a fracture. This study employs previously developed alginate/chitosan polyelectrolyte complex (PEC) hydrogels as a sustained release vehicle for the delivery of short-interfering RNA (siRNA). Specifically, the siRNA targets the p38-MAPK pathway in mesenchymal stem cells (MSCs) to prevent their osteogenic differentiation. In vitro experimental findings show sustained release of siRNA from the hydrogels for 6 months. Flow cytometry and confocal imaging indicate that the hydrogels release siRNA to effectively knockdown GFP expression over a sustained period. MAPK-14 targeting siRNA was used to knockdown the expression of MAPK-14 and correspondingly decrease the expression of other osteogenic genes in MSCs in vitro over the span of 21 days. These hydrogels were used in a rat model of growth plate injury to determine whether siMAPK-14 released from the gels could inhibit bony bar formation. No significant reduction of bony bar formation was seen in vivo at the one concentration of siRNA examined. This PEC hydrogel represents a significant advancement for siRNA sustained delivery, and presents an interesting potential therapeutic delivery system for growth plate injuries and other regenerative medicine applications.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2346-2357"},"PeriodicalIF":3.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon T. McLoughlin, Paige Wilcox, Sarang Han, John F. Caccamese, John P. Fisher
{"title":"Comparison of cation and anion-mediated resolution enhancement of bioprinted hydrogels for membranous tissue fabrication","authors":"Shannon T. McLoughlin, Paige Wilcox, Sarang Han, John F. Caccamese, John P. Fisher","doi":"10.1002/jbm.a.37783","DOIUrl":"10.1002/jbm.a.37783","url":null,"abstract":"<p>Fabrication of engineered thin membranous tissues (TMTs) presents a significant challenge to researchers, as these structures are small in scale, but present complex anatomies containing multiple stratified cell layers. While numerous methodologies exist to fabricate such tissues, many are limited by poor mechanical properties, need for post-fabrication, or lack of cytocompatibility. Extrusion bioprinting can address these issues, but lacks the resolution necessary to generate biomimetic, microscale TMT structures. Therefore, our goal was to develop a strategy that enhances bioprinting resolution below its traditional limit of 150 μm and delivers a viable cell population. We have generated a system to effectively shrink printed gels via electrostatic interactions between anionic and cationic polymers. Base hydrogels are composed of gelatin methacrylate type A (cationic), or B (anionic) treated with anionic alginate, and cationic poly-L-lysine, respectively. Through a complex coacervation-like mechanism, the charges attract, causing compaction of the base GelMA network, leading to reduced sample dimensions. In this work, we evaluate the role of both base hydrogel and shrinking polymer charge on effective print resolution and cell viability. The alginate anion-mediated system demonstrated the ability to reach bioprinting resolutions of 70 μm, while maintaining a viable cell population. To our knowledge, this is the first study that has produced such significant enhancement in extrusion bioprinting capabilities, while also remaining cytocompatible.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2329-2345"},"PeriodicalIF":3.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37783","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyi Tang, Ping Kang, Fiona Verisqa, Linh Nguyen, Jonathan C. Knowles
{"title":"Zinc phosphate glass microspheres promoted mineralization and expression of BMP2 in MC3T3-E1 cells","authors":"Tianyi Tang, Ping Kang, Fiona Verisqa, Linh Nguyen, Jonathan C. Knowles","doi":"10.1002/jbm.a.37781","DOIUrl":"10.1002/jbm.a.37781","url":null,"abstract":"<p>Degradable phosphate glasses have shown favorable properties for tissue engineering. By changing the composition of the glasses, the degradation rate, and ion release are controllable. Zinc oxide can function as a glass network modifier and has been shown to play a positive role in bone formation. Also, phosphate glasses can easily be processed into microspheres, which can be used as microcarriers. This study aims to develop zinc phosphate glasses microspheres and explore the optimized size and composition for applications in bone tissue engineering. Zinc–titanium–calcium–sodium phosphate glasses with 0, 1, 3, 5, or 10 mol % zinc oxide were prepared and processed into microspheres. The smaller microspheres ranged in size from 50 to 106 μm, while the larger ones ranged from 106 to 150 μm. The characteristics of glasses were examined. The osteoblastic cell line MC3T3-E1 was cultured on the surface of microspheres and the cell viability was examined. To evaluate osteogenic differentiation, Alizarin Red S staining, quantitative reverse transcription polymerase chain reaction, and western blot analysis were performed after 14 days. Different sizes of zinc phosphate glass microspheres were successfully made. The glass microspheres with <10 mol % zinc oxide were able to support the adhesion and proliferation of MC3T3-E1 cell lines. The relative gene expression of BMP2 was significantly upregulated in the smaller glass microspheres containing 3 mol % zinc oxide (26-fold, <i>p</i> < .001) and both sizes of microspheres containing 5 mol % zinc oxide (smaller: 27-fold, <i>p</i> < .001; larger: 35-fold, <i>p</i> < .001). Additionally, cluster formation was observed in glass microspheres after 14 days, and the mineralization of MC3T3-E1 cell lines was promoted. Based on these findings, the glass microspheres containing 3–5 mol % of zinc oxide can promote osteogenic differentiation for MC3T3-E1 cells.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2314-2328"},"PeriodicalIF":3.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37781","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}