{"title":"Soluble Proteins From Conventional and Organic Eggshell Membranes With Different Proteomic Profiles Show Similar In Vitro Biofunctions","authors":"Qianli Ma, Lya Piaia, Dagnija Loca, Kristaps Rubenis, Janis Locs, Bernd Thiede, Ólafur Eysteinn Sigurjónsson, Håvard Jostein Haugen","doi":"10.1002/jbm.a.37848","DOIUrl":"10.1002/jbm.a.37848","url":null,"abstract":"<p>The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection. In this study, soluble ESM proteins (SEPs) were extracted from conventional (industrial-fed) and organic (free-grounded) using an acidic 3-mercaptopropionic acid (3-MPA) extraction strategy. FTIR was employed to monitor the chemical changes in the ESM, while LC–MS/MS was used to conduct the proteomic analysis. The biocompatibility and effects of SEP cocktails on ECM synthesis were also investigated. The results indicated that the acidic 3-MPA strategy effectively altered the ESM chemical composition, thereby facilitating SEPs extraction. The SEPs from conventional and organic eggs have different protein profiles but with partial overlapping. SEPs from both sources showed similar desirable biosafety profiles and dose-dependent promotion of osteoblastic (ECM) component synthesis, suggesting that different egg sources may contribute to consistent core biological functions of protein products, they may also introduce different functional priorities.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37848","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dextran Sulfate-Modified and pH-Responsive Nanoprobes for Magnetic Resonance/Fluorescence Dual-Modality Imaging of Vulnerable Plaques","authors":"Jianing Cheng, Liguo Hao, Xiaorong Zhu, Ruifan Ma, Silong Li, Qiangqiang Yin, Dongxu Wang, Haifeng Hu, Tianyu Zhang, Zheng Li, Houyi Cong, Xiaoyang Zheng, Jun He, Yuguang Wang","doi":"10.1002/jbm.a.37847","DOIUrl":"10.1002/jbm.a.37847","url":null,"abstract":"<div>\u0000 \u0000 <p>Triggered by the vulnerability to atherosclerotic plaques, cardiovascular diseases (CVDs) have become a main reason for high mortality worldwide. Thus, there is an urgent need to develop functional molecular imaging modalities to improve the detection rate of vulnerable plaques. In this study, polyethyleneimine (PEI) was coated on the surface of mesoporous silica nanoprobes (MSN) loaded with Gd<sub>2</sub>O<sub>3</sub> (MSN@Gd<sub>2</sub>O<sub>3</sub>), followed by coupling the fluorescent dye carboxylated heptamethine cyanine (IR808), and then the dextran sulfate (DS) was modified on the surface of MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808 by electrostatic adsorption, to construct a targeted and pH-responsive magnetic resonance (MR)/near-infrared fluorescence imaging (NIRF) dual-modal nanoprobe (MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles). The nanoprobe presented a more concentrated distribution of spherical shapes in transmission electron microscopy. In vitro simulated vulnerable plaque microenvironment (pH = 5.5) presented significant T<sub>1</sub>-weighted imaging (T<sub>1</sub>WI) signal and longitudinal relaxation in the nanoprobe. Immunofluorescence staining and cellular uptake assays showed that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have the ability to specially bind to scavenger receptors A (SR-A). In vascular endothelium from the high-fat diet (HFD) New Zealand White rabbits, MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles can exhibit specific contrast-enhanced signals by MR/NIRF dual-modal imaging. In addition, cytotoxicity assays and hematoxylin and eosin (H&E) staining results demonstrated that MSN@Gd<sub>2</sub>O<sub>3</sub>@IR808@DS nanoparticles have good biocompatibility. Hence, this multifunctional MR/NIRF bimodal nanoprobe provides new experimental and technological ideas for the accurate diagnosis of vulnerable plaques.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qibin Han, Yinhua Qian, Lang Bai, Jing Zhou, Yuefeng Hao, Dan Hu, Zhouzhou Zhang, Xing Yang
{"title":"Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model","authors":"Qibin Han, Yinhua Qian, Lang Bai, Jing Zhou, Yuefeng Hao, Dan Hu, Zhouzhou Zhang, Xing Yang","doi":"10.1002/jbm.a.37844","DOIUrl":"10.1002/jbm.a.37844","url":null,"abstract":"<div>\u0000 \u0000 <p>Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility. Here, we fabricated AKBA-encapsulated cationic liposome-gelatin methacrylamide (GelMA) microspheres (GM-Lipo-AKBA) using thin-film hydration and microfluidic technology for drug delivery therapy. GM-Lipo-AKBA exhibited high encapsulation efficiency, extended AKBA release for over 4 weeks, and prolonged degradation. In vitro and in vivo experiments demonstrated its effectiveness in improving inflammation and ECM remodeling in tendinopathy. In summary, the injectable nano-micron drug delivery platform provides a promising strategy for the sustained and localized delivery of AKBA for tendinopathy treatment.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mamun Khan Sujon, Siti Fatimah Samsurrijal, Ruzalina Baharin, Naurah Mat Isa, Muhammad Azrul Zabidi, Siti Noor Fazliah Mohd Noor
{"title":"Effects of Gamma Irradiation on Structural, Chemical, Bioactivity and Biocompatibility Characteristics of Bioactive Glass–Polymer Composite Film","authors":"Mamun Khan Sujon, Siti Fatimah Samsurrijal, Ruzalina Baharin, Naurah Mat Isa, Muhammad Azrul Zabidi, Siti Noor Fazliah Mohd Noor","doi":"10.1002/jbm.a.37842","DOIUrl":"10.1002/jbm.a.37842","url":null,"abstract":"<div>\u0000 \u0000 <p>Gamma irradiation is an effective technique for biocomposite films intended for application in tissue engineering (TE) to ensure sterility and patient safety prior to clinical applications. This study proposed a biocomposite film composed of natural polymer chitosan (CS) and synthetic polymer poly-Ɛ-caprolactone (PCL) reinforced with sol–gel-derived bioactive glass (BG) for potential application in TE. The BG/PCL/CS biocomposite film was sterilized using 25 kGy gamma rays, and subsequent changes in its characteristics were analyzed through mechanical and physical assessment, bioactivity evaluation via immersion in simulated body fluid (SBF) and biocompatibility examination using human primary dermal fibroblasts (HPDFs). Results indicated a homogeneous distribution of BG particles within the BG/PCL/CS polymer matrix which enhanced bioactivity, and the polymer blend provide a structurally stable film. Gamma irradiation induced an increase in the film's surface roughness due to photo-oxidative degradation; however, this did not adversely affect the integrity of glass particles and polymer chains. In vitro assessments demonstrated hydroxyapatite formation on the film's surface, suggesting bioactivity. Biocompatibility testing confirmed enhanced cell adhesion and proliferation. These multifunctional properties highlight the potential of the fabricated BG/PCL/CS biocomposite film for TE and regenerative medicine applications.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasemin Acar, Amy Managh, Eric James Hill, Paul Roach
{"title":"Tuning Surface Chemistry Impacts on Cardiac Endothelial and Smooth Muscle Cell Development","authors":"Yasemin Acar, Amy Managh, Eric James Hill, Paul Roach","doi":"10.1002/jbm.a.37846","DOIUrl":"10.1002/jbm.a.37846","url":null,"abstract":"<p>Cardiovascular diseases (CVDs) are the leading causes of death worldwide, with approx. Twenty million deaths in 2021. Cardiovascular implants are among the most used biomaterials in the clinical world. However, poor endothelialisation and rapid thrombosis remains a challenge. Simple chemical surface modification techniques can be used to steer biological interactions without affecting the bioimplants' overall bulk characteristics such as radiopacity and flexibility. Although silanes are well studied for protein and cell interactions, the methodical investigation of cardiac endothelial cell (EC) alongside smooth muscle cell (SMC) to mimic natural arterial environments has been limited. In this study, these cells have been investigated on surfaces functionalized with methyl, amine, thiol, methacrylate, and fluorine organosilane groups. Cardiac EC and SMC growth was investigated with metabolic activity, time lapse imaging, and immunofluorescent staining techniques. The results demonstrated that the surfaces tested are able to selectively regulate the viability and growth of the cells. Aminosilane modified surfaces displayed 2-fold higher metabolic activity with HUVEC and 2-fold less metabolic activity with HCASMC cell lines, compared to tissue culture plastic controls. The amino-modification outperformed all other chemistries tested in terms of ability to promote the proliferation of ECs, while importantly reducing the activity of SMCs. This report demonstrates that aminosilane modified surfaces have the potential to be utilized in novel cardiovascular implants, which could improve biological integration in the short and possibly longer-term. The findings of this study suggest that specific chemical modifications of the surface can enhance endothelial cell activity while minimizing the proliferation of smooth muscle cells, which are often associated with thrombosis. This highlights the potential of carefully engineered surface chemistries to improve the clinical outcomes of cardiovascular implants.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37846","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Vitro Osteogenic Response to Copper-Doped Eggshell-Derived Hyroxyapatite With Macrophage Supplements","authors":"Tejal V. Patil, Dinesh K. Patel, Ki-Taek Lim","doi":"10.1002/jbm.a.37838","DOIUrl":"https://doi.org/10.1002/jbm.a.37838","url":null,"abstract":"<div>\u0000 \u0000 <p>The high bioactivity and biocompatibility of hydroxyapatite (HAP) make it a useful bone graft material for bone tissue engineering. However, the development superior osteoconductive and osteoinductive materials for bone regeneration remains a challenge. To overcome these constraints, Cu-doped hydroxyapatite (HAP(Cu)) from waste eggshells has been produced for bone tissue engineering. The materials produced were characterized using Fourier transform infrared spectroscopy, x-ray diffraction, and photoelectron spectroscopy. The scanning microscopy images revealed that the developed HAP was a rod-like crystalline structure with a typical 80–150 nm diameter. Energy-dispersive x-ray spectroscopy showed that the generated HAP was mostly composed of calcium, oxygen, and phosphorus. The Ca/P molar ratios in eggshell-derived and copper-doped HAP were 1.61 and 1.67, respectively, similar to the commercially available HAP ratio (1.67). The WST-8 assay was used to assess the biocompatibility of HAPs with hBMSCs. HAP(Cu) in the media significantly altered the cytotoxicity of biocompatible HAP(Cu). The osteogenic potential of HAP(Cu) was demonstrated by greater mineralization than that of pure HAP or the control. HAP(Cu) showed higher osteogenic gene expression than pure HAP and the control, indicating its stronger osteogenic potential. Furthermore, we assessed the effects of sample-treated macrophage-derived conditioned medium (CM) on hBMSCs' osteogenesis. CM-treated HAP(Cu) demonstrated a significantly higher osteogenic potential vis-à-vis pure HAP(Cu). These findings revealed that HAP(Cu) with CM significantly improved osteogenesis in hBMSCs and can be explored as a bone graft in bone tissue engineering.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara F. M. Senra, Sérgio R. S. Veloso, Madalena Lira, Elisabete M. S. Castanheira
{"title":"Albumin/Hyaluronic Acid Nanoparticle-Laden Contact Lenses for the Ocular Delivery of 5-Fluorouracil","authors":"Sara F. M. Senra, Sérgio R. S. Veloso, Madalena Lira, Elisabete M. S. Castanheira","doi":"10.1002/jbm.a.37839","DOIUrl":"https://doi.org/10.1002/jbm.a.37839","url":null,"abstract":"<div>\u0000 \u0000 <p>Nanoparticle-laden contact lenses are a formidable strategy for ocular drug delivery. However, incorporating nanoparticles to achieve sustained drug release without affecting the contact lenses' properties remains a challenging task. In this work, daily and monthly replacement silicone-hydrogel contact lenses laden with bovine serum albumin/hyaluronic acid (BSA/HA) nanoparticles are presented. These nanoparticle-laden contact lenses enable the sustained release of 5-fluorouracil (5-FU) in mimetic physiological conditions. The nanoparticle-laden contact lenses display properties similar to neat contact lenses, including refractive index, water content, UV/visible transmittance and chemical structure. Noteworthy attributes include the BSA/HA nanoparticles' low polydispersity, negative surface charge and a hydrodynamic size of ~210 nm, as well as the high nanoparticle loading efficiency (~ 30%) of the contact lenses. Thereby, the BSA/HA nanoparticles are a promising strategy for developing nanoparticle-laden contact lenses for therapeutic applications, namely for sustained drug delivery.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taowen Guo, Shifan Lin, Le Zou, Guoliang Zhang, Jiaqi Long, Zhiping Zhang, Shan Wang
{"title":"Graphene Oxide Functionalized GelMA Platform Loaded With BFP-1 for Osteogenic Differentiation of BMSCs","authors":"Taowen Guo, Shifan Lin, Le Zou, Guoliang Zhang, Jiaqi Long, Zhiping Zhang, Shan Wang","doi":"10.1002/jbm.a.37829","DOIUrl":"https://doi.org/10.1002/jbm.a.37829","url":null,"abstract":"<p>Spinal fusion is the ultimate choice for most patients with severe disc degeneration, and bone tissue engineering offers novel strategies to improve intervertebral bone growth and fusion. In this study, we utilized graphene oxide (GO) and methacrylated gelatin (GelMA) to prepare GelMA/GO composite hydrogel scaffolds with different GO concentrations. By characterizing the various properties of the scaffolds, it was learned that the composite scaffold containing 1.2 mg/mL GO possessed the best overall performance, and we used it for subsequent experiments. GelMA/GO composite scaffolds containing different bone-forming peptide-1 (BFP-1) concentrations were constructed and cocultured with bone marrow mesenchymal stem cells (BMSCs), and the results showed that GelMA/GO composite scaffolds containing 0.4 mg/mL BFP-1 induced the cells to produce more ALP and mineralized matrix. The above scaffold was further investigated as a GelMA/GO@BFP-1 composite, and the results showed that it promoted the production of ALP and mineralized matrix in BMSCs, and significantly enhanced the expression of osteogenesis-related genes (ALP, Runx-2, OCN, OPN) and proteins (Runx-2, OCN). It suggests that the GelMA/GO@BFP-1 complex promotes osteogenic differentiation of BMSCs and has the potential tobe used as a bone implant for improving intervertebral bone fusion.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel J. Rodriguez-Rivera, Fei Xu, Madeline Laude, Vani Shah, Abbey Nkansah, Derek Bashe, Ziyang Lan, Malgorzata Chwatko, Elizabeth Cosgriff-Hernandez
{"title":"Design of PEG-Based Hydrogels as Soft Ionic Conductors","authors":"Gabriel J. Rodriguez-Rivera, Fei Xu, Madeline Laude, Vani Shah, Abbey Nkansah, Derek Bashe, Ziyang Lan, Malgorzata Chwatko, Elizabeth Cosgriff-Hernandez","doi":"10.1002/jbm.a.37840","DOIUrl":"10.1002/jbm.a.37840","url":null,"abstract":"<div>\u0000 \u0000 <p>Conductive hydrogels have gained interest in biomedical applications and soft electronics. To tackle the challenge of ionic hydrogels falling short of desired mechanical properties in previous studies, our investigation aimed to understand the pivotal structural factors that impact the conductivity and mechanical behavior of polyethylene glycol (PEG)-based hydrogels with ionic conductivity. Polyether urethane diacrylamide (PEUDAm), a functionalized long-chain macromer based on PEG, was used to synthesize hydrogels with ionic conductivity conferred by incorporating ions into the liquid phase of the hydrogel. The impact of salt concentration, water content, temperature, and gel formation on both mechanical properties and conductivity was characterized to establish parameters for tuning hydrogel properties. To further expand the range of conductivity available in these ionic hydrogels, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was incorporated as a single copolymer network or double network configuration. As expected, conductivity in these ionic gels was primarily driven by ion diffusivity and charge density, which were dependent on hydrogel network formation and swelling. Copolymer network structure had minimal effect on the conductivity, which was primarily driven by counter-ion equilibrium; however, the mechanical properties and equilibrium swelling were strongly dependent on network structure. The structure–property relationships elucidated here enable the rationale design of this new double network hydrogel to achieve target properties for a broad range of biomedical applications.</p>\u0000 </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regenerated nanofibrous cellulose electrospun from ionic liquid: Tuning properties toward tissue engineering.","authors":"Ingrida Pauliukaitytė,Darius Čiužas,Edvinas Krugly,Odeta Baniukaitienė,Mindaugas Bulota,Vilma Petrikaitė,Dainius Martuzevičius","doi":"10.1002/jbm.a.37798","DOIUrl":"https://doi.org/10.1002/jbm.a.37798","url":null,"abstract":"Regenerated fibrous cellulose possesses a unique set of properties, including biocompatibility, biodegradability, and high surface area potential, but its applications in the biomedical sector have not been sufficiently explored. In this study, nanofibrous cellulose matrices were fabricated via a wet-electrospinning process using a binary system of the solvent ionic liquid (IL) 1-butyl-3-methylimidazolium acetate (BMIMAc) and co-solvent dimethyl sulfoxide (DMSO). The morphology of the matrices was controlled by varying the ratio of BMIMAc versus DMSO in the solvent system. The most effective ratio of 1:1 produced smooth fibers with diameters ranging from 200 to 400 nm. The nanofibrous cellulose matrix showed no cytotoxicity when tested on mouse fibroblast L929 cells whose viability remained above 95%. Human triple-negative breast cancer MDA-MB-231 cells also exhibited high viability even after 7 days of seeding and were able to penetrate deeper layers of the matrix, indicating high biocompatibility. These properties of nanofibrous cellulose demonstrate its potential for tissue engineering and cell culture applications.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"3 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}