生物医学用途的机械变色聚氨酯形状记忆聚合物

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Thalma Orado, Bethany Yashkus, Richard Chandardat, Samantha Zysk, Zachary J. Geffert, Ernest Emmanuel Obeng, Xiaocun Lu, Pranav Soman, Mary Beth B. Monroe
{"title":"生物医学用途的机械变色聚氨酯形状记忆聚合物","authors":"Thalma Orado,&nbsp;Bethany Yashkus,&nbsp;Richard Chandardat,&nbsp;Samantha Zysk,&nbsp;Zachary J. Geffert,&nbsp;Ernest Emmanuel Obeng,&nbsp;Xiaocun Lu,&nbsp;Pranav Soman,&nbsp;Mary Beth B. Monroe","doi":"10.1002/jbm.a.37979","DOIUrl":null,"url":null,"abstract":"<p>The incorporation of functional molecular switches into smart materials imparts dynamic material properties, gaining deeper insight into how molecular structure affects the functionality of these materials and aiding the development of novel sensor devices. To enable mechanochromic biomaterials capable of sensing shape changes, we explored the incorporation of spiropyran (SP) mechanophores into a polyurethane (PUR) shape memory polymer (SMP). SPs reversibly generate variations in fluorescence and visual colors due to conversion from inactivated SP to activated merocyanine (MC) in response to force. We hypothesized that SP-containing PUR (PUR-SP) could undergo simultaneous shape and color changes. Small quantities of SP were dissolved in control PUR solutions with different hard-to-soft segment ratios, and PUR-SP films were formed by solvent-casting. The effect of SP incorporation on material properties, including mechanical, shape memory, thermal, and cytocompatibility, was studied. Mechanochromic behavior was analyzed by straining the films and imaging using a camera and fluorescence microscopy. We also employed a previously developed bacterial protease-responsive PUR SMP to confirm that SP incorporation enables simultaneous shape and color changes in the presence of bacteria. Strained samples showed increased fluorescence (up to 56%, <i>p</i> &lt; 0.05), which was reversed upon shape recovery. Mechanochromic behavior was affected by the hard-to-soft segment ratio of the PUR, SP concentration, and strain percentage. Bacteria-responsive PURs with SP showed reduction in fluorescence and complete biofilm removal after incubation with <i>Staphylococcus</i> <i>aureus</i> for 24 h, which conveyed the potential to use SP in PURs as a molecular force probe with color-based bacteria detection. This technology could be expanded to include a range of other stimuli-responsive functionalities in future work to enable shape and color changes based on environmental cues.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37979","citationCount":"0","resultStr":"{\"title\":\"Mechanochromic Polyurethane Shape Memory Polymer for Biomedical Applications\",\"authors\":\"Thalma Orado,&nbsp;Bethany Yashkus,&nbsp;Richard Chandardat,&nbsp;Samantha Zysk,&nbsp;Zachary J. Geffert,&nbsp;Ernest Emmanuel Obeng,&nbsp;Xiaocun Lu,&nbsp;Pranav Soman,&nbsp;Mary Beth B. Monroe\",\"doi\":\"10.1002/jbm.a.37979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The incorporation of functional molecular switches into smart materials imparts dynamic material properties, gaining deeper insight into how molecular structure affects the functionality of these materials and aiding the development of novel sensor devices. To enable mechanochromic biomaterials capable of sensing shape changes, we explored the incorporation of spiropyran (SP) mechanophores into a polyurethane (PUR) shape memory polymer (SMP). SPs reversibly generate variations in fluorescence and visual colors due to conversion from inactivated SP to activated merocyanine (MC) in response to force. We hypothesized that SP-containing PUR (PUR-SP) could undergo simultaneous shape and color changes. Small quantities of SP were dissolved in control PUR solutions with different hard-to-soft segment ratios, and PUR-SP films were formed by solvent-casting. The effect of SP incorporation on material properties, including mechanical, shape memory, thermal, and cytocompatibility, was studied. Mechanochromic behavior was analyzed by straining the films and imaging using a camera and fluorescence microscopy. We also employed a previously developed bacterial protease-responsive PUR SMP to confirm that SP incorporation enables simultaneous shape and color changes in the presence of bacteria. Strained samples showed increased fluorescence (up to 56%, <i>p</i> &lt; 0.05), which was reversed upon shape recovery. Mechanochromic behavior was affected by the hard-to-soft segment ratio of the PUR, SP concentration, and strain percentage. Bacteria-responsive PURs with SP showed reduction in fluorescence and complete biofilm removal after incubation with <i>Staphylococcus</i> <i>aureus</i> for 24 h, which conveyed the potential to use SP in PURs as a molecular force probe with color-based bacteria detection. This technology could be expanded to include a range of other stimuli-responsive functionalities in future work to enable shape and color changes based on environmental cues.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37979\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37979\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37979","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

将功能分子开关整合到智能材料中可以赋予动态材料特性,从而更深入地了解分子结构如何影响这些材料的功能,并有助于开发新型传感器设备。为了使机械变色生物材料能够感知形状变化,我们探索了将螺吡喃(SP)机械基团掺入聚氨酯(PUR)形状记忆聚合物(SMP)中。SPs可逆地产生荧光和视觉颜色的变化,这是由于在力的作用下,从失活的SP转化为活化的merocyanine (MC)。我们假设含有sp的PUR (PUR- sp)可以同时发生形状和颜色的变化。将少量SP溶解在不同软硬段比的对照PUR溶液中,通过溶剂铸造形成PUR-SP膜。研究了SP掺入对材料性能的影响,包括力学、形状记忆、热学和细胞相容性。利用相机和荧光显微镜对薄膜进行拉伸和成像,分析了机械变色行为。我们还采用了先前开发的细菌蛋白酶响应PUR SMP来证实SP的掺入可以在细菌存在的情况下同时改变形状和颜色。应变样品显示荧光增强(高达56%,p < 0.05),形状恢复后则相反。力学变色行为受PUR的软硬段比、SP浓度和应变百分比的影响。与金黄色葡萄球菌孵育24小时后,SP的细菌响应性PURs显示出荧光降低和完全生物膜去除,这表明SP在PURs中有可能作为基于颜色的细菌检测的分子力探针。在未来的工作中,这项技术可以扩展到包括一系列其他刺激响应功能,以实现基于环境线索的形状和颜色变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanochromic Polyurethane Shape Memory Polymer for Biomedical Applications

Mechanochromic Polyurethane Shape Memory Polymer for Biomedical Applications

The incorporation of functional molecular switches into smart materials imparts dynamic material properties, gaining deeper insight into how molecular structure affects the functionality of these materials and aiding the development of novel sensor devices. To enable mechanochromic biomaterials capable of sensing shape changes, we explored the incorporation of spiropyran (SP) mechanophores into a polyurethane (PUR) shape memory polymer (SMP). SPs reversibly generate variations in fluorescence and visual colors due to conversion from inactivated SP to activated merocyanine (MC) in response to force. We hypothesized that SP-containing PUR (PUR-SP) could undergo simultaneous shape and color changes. Small quantities of SP were dissolved in control PUR solutions with different hard-to-soft segment ratios, and PUR-SP films were formed by solvent-casting. The effect of SP incorporation on material properties, including mechanical, shape memory, thermal, and cytocompatibility, was studied. Mechanochromic behavior was analyzed by straining the films and imaging using a camera and fluorescence microscopy. We also employed a previously developed bacterial protease-responsive PUR SMP to confirm that SP incorporation enables simultaneous shape and color changes in the presence of bacteria. Strained samples showed increased fluorescence (up to 56%, p < 0.05), which was reversed upon shape recovery. Mechanochromic behavior was affected by the hard-to-soft segment ratio of the PUR, SP concentration, and strain percentage. Bacteria-responsive PURs with SP showed reduction in fluorescence and complete biofilm removal after incubation with Staphylococcus aureus for 24 h, which conveyed the potential to use SP in PURs as a molecular force probe with color-based bacteria detection. This technology could be expanded to include a range of other stimuli-responsive functionalities in future work to enable shape and color changes based on environmental cues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信