粘膜下水凝胶用于弹簧介导的肠道延长

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Fereshteh Salimi-Jazi, Narelli de Paiva Narciso, Gillian Fell, Anne-Laure Thomas, Renato S. Navarro, Talha Rafeeqi, Neil J. Baugh, Riley A. Suhar, Julie-Ann Nguyen, Nolan Lopez, Sarah C. Heilshorn, James C. Y. Dunn
{"title":"粘膜下水凝胶用于弹簧介导的肠道延长","authors":"Fereshteh Salimi-Jazi,&nbsp;Narelli de Paiva Narciso,&nbsp;Gillian Fell,&nbsp;Anne-Laure Thomas,&nbsp;Renato S. Navarro,&nbsp;Talha Rafeeqi,&nbsp;Neil J. Baugh,&nbsp;Riley A. Suhar,&nbsp;Julie-Ann Nguyen,&nbsp;Nolan Lopez,&nbsp;Sarah C. Heilshorn,&nbsp;James C. Y. Dunn","doi":"10.1002/jbm.a.37986","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spring-mediated distraction enterogenesis has shown success in intestinal lengthening, with spring confinement achieved by external plication with sutures to reduce the lumen diameter at both ends of the intestinal segment. Endoscopic spring placement would minimize the morbidity associated with device insertion. This study investigates the use of submucosal injection of engineered hydrogel to temporarily confine a compressed spring within an intestinal segment. Engineered hydrogels were composed of hyaluronic acid (HA) alone or HA with elastin-like protein (HELP). To simulate endoscopic injection in six juvenile pigs, hydrogel was injected into the submucosa in everted jejunum, followed by the placement of a gelatin-encapsulated, compressed nitinol spring. The jejunum was then unfolded over the spring, and hydrogel was injected distally into the submucosa. Sutures were placed as fiducial markers. After 7 days on a liquid diet, the pigs were euthanized, and their intestinal segments were analyzed for lengthening and histological changes. The spring-containing jejunal segments expanded in all animals, lengthening to 132% in the HA group and 188% in the HELP group. HELP hydrogels exhibited slower biodegradation than HA-only hydrogels. Histological analysis showed increased crypt width and decreased crypt density in the spring-containing segments compared to controls. Hydrogel effectively provides temporary spring confinement within intestinal segments without adverse effects. The mechanical stimulation from the spring induces crypt fission, expanding the intestinal epithelium. These results support the feasibility of gel-enabled, spring-mediated distraction enterogenesis for intestinal lengthening.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submucosal Hydrogel for Spring-Mediated Intestinal Lengthening\",\"authors\":\"Fereshteh Salimi-Jazi,&nbsp;Narelli de Paiva Narciso,&nbsp;Gillian Fell,&nbsp;Anne-Laure Thomas,&nbsp;Renato S. Navarro,&nbsp;Talha Rafeeqi,&nbsp;Neil J. Baugh,&nbsp;Riley A. Suhar,&nbsp;Julie-Ann Nguyen,&nbsp;Nolan Lopez,&nbsp;Sarah C. Heilshorn,&nbsp;James C. Y. Dunn\",\"doi\":\"10.1002/jbm.a.37986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Spring-mediated distraction enterogenesis has shown success in intestinal lengthening, with spring confinement achieved by external plication with sutures to reduce the lumen diameter at both ends of the intestinal segment. Endoscopic spring placement would minimize the morbidity associated with device insertion. This study investigates the use of submucosal injection of engineered hydrogel to temporarily confine a compressed spring within an intestinal segment. Engineered hydrogels were composed of hyaluronic acid (HA) alone or HA with elastin-like protein (HELP). To simulate endoscopic injection in six juvenile pigs, hydrogel was injected into the submucosa in everted jejunum, followed by the placement of a gelatin-encapsulated, compressed nitinol spring. The jejunum was then unfolded over the spring, and hydrogel was injected distally into the submucosa. Sutures were placed as fiducial markers. After 7 days on a liquid diet, the pigs were euthanized, and their intestinal segments were analyzed for lengthening and histological changes. The spring-containing jejunal segments expanded in all animals, lengthening to 132% in the HA group and 188% in the HELP group. HELP hydrogels exhibited slower biodegradation than HA-only hydrogels. Histological analysis showed increased crypt width and decreased crypt density in the spring-containing segments compared to controls. Hydrogel effectively provides temporary spring confinement within intestinal segments without adverse effects. The mechanical stimulation from the spring induces crypt fission, expanding the intestinal epithelium. These results support the feasibility of gel-enabled, spring-mediated distraction enterogenesis for intestinal lengthening.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37986\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37986","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

弹簧介导的牵张肠发生在肠道延长方面已经显示出成功的效果,弹簧约束是通过肠段两端的外展缝合来实现的,以减少肠段的管腔直径。内窥镜弹簧放置将减少与装置插入相关的发病率。本研究探讨了使用粘膜下注射工程水凝胶来暂时限制肠段内的压缩弹簧。工程水凝胶由透明质酸(HA)单独或透明质酸与弹性蛋白样蛋白(HELP)组成。为了模拟6只幼猪的内镜注射,将水凝胶注射到外翻空肠的粘膜下层,然后放置明胶包裹的压缩镍钛醇弹簧。然后在弹簧上展开空肠,水凝胶被远端注射到粘膜下层。缝合线作为基准标记放置。饲喂液体饲粮7 d后,将猪安乐死,观察肠段延长和组织学变化。所有动物含弹簧的空肠段均扩大,HA组延长132%,HELP组延长188%。HELP水凝胶的生物降解速度比ha水凝胶慢。组织学分析显示,与对照组相比,含弹簧节段的隐窝宽度增加,隐窝密度降低。水凝胶有效地在肠段内提供暂时的弹簧约束,没有副作用。来自弹簧的机械刺激诱导隐窝裂变,扩大肠上皮。这些结果支持凝胶激活、弹簧介导的牵张肠形成用于肠道延长的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submucosal Hydrogel for Spring-Mediated Intestinal Lengthening

Spring-mediated distraction enterogenesis has shown success in intestinal lengthening, with spring confinement achieved by external plication with sutures to reduce the lumen diameter at both ends of the intestinal segment. Endoscopic spring placement would minimize the morbidity associated with device insertion. This study investigates the use of submucosal injection of engineered hydrogel to temporarily confine a compressed spring within an intestinal segment. Engineered hydrogels were composed of hyaluronic acid (HA) alone or HA with elastin-like protein (HELP). To simulate endoscopic injection in six juvenile pigs, hydrogel was injected into the submucosa in everted jejunum, followed by the placement of a gelatin-encapsulated, compressed nitinol spring. The jejunum was then unfolded over the spring, and hydrogel was injected distally into the submucosa. Sutures were placed as fiducial markers. After 7 days on a liquid diet, the pigs were euthanized, and their intestinal segments were analyzed for lengthening and histological changes. The spring-containing jejunal segments expanded in all animals, lengthening to 132% in the HA group and 188% in the HELP group. HELP hydrogels exhibited slower biodegradation than HA-only hydrogels. Histological analysis showed increased crypt width and decreased crypt density in the spring-containing segments compared to controls. Hydrogel effectively provides temporary spring confinement within intestinal segments without adverse effects. The mechanical stimulation from the spring induces crypt fission, expanding the intestinal epithelium. These results support the feasibility of gel-enabled, spring-mediated distraction enterogenesis for intestinal lengthening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信