Gerson Santos de Almeida, Thais Silva Pinto, Luísa Camilo Suter, Geórgia da Silva Feltran, Maria Gabriela Jacheto Carra, Julia Ferreira Moraes, Diego Rafael Nespeque Corrêa, Paulo Noronha Lisboa Filho, Margarida Juri Saeki, Willian Fernando Zambuzzi
{"title":"Cobalt-Doped Monetite-Induced Biomimetic Hypoxia Camouflages Osteogenic Healing Microenvironment","authors":"Gerson Santos de Almeida, Thais Silva Pinto, Luísa Camilo Suter, Geórgia da Silva Feltran, Maria Gabriela Jacheto Carra, Julia Ferreira Moraes, Diego Rafael Nespeque Corrêa, Paulo Noronha Lisboa Filho, Margarida Juri Saeki, Willian Fernando Zambuzzi","doi":"10.1002/jbm.a.37984","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To address developing novel biomimetic material able to camouflage osteogenic healing microenvironment, this study looked to synthesize and characterize a cobalt-doped monetite (CoCaP). After synthesizing, the samples were subjected to physicochemical and biological characterization a comprehensive structural analysis encompassing a suite of complementary techniques. Previously, our data show a validation and reveal distinct structural alterations from cobalt doping. Biologically, Co-doped monetite had no cytotoxic effects on osteoblasts up to 7 days; rather, it contributed to osteoblast adhesion and migration, here estimated by carrying out a wound healing assay. Thereafter, we have linked this phenomenon to an upregulation of cyclin-dependent kinases (CDKs) genes, and it was hypothesized to be related to the dynamic adhesion-related machinery requiring the upregulation of integrins, focal adhesion kinase (FAK), and Src. Complementarily, osteoblast differentiation was also investigated, and our data clearly show a strong stimulus of osteogenic phenotype, once it was shown a significantly increased upregulation of both classical osteogenic transcription factors Runx2 and Osterix, both in response to Co-doped monetite. Additionally, we observed extracellular matrix (ECM) remodeling requiring the activities of matrix metalloproteinase 9 (MMP9) zymogens, suggesting effective collagen turnover along osteoblast differentiation and mineralization. Collectively, our findings show the biological impact of Co-doped monetite on the osteogenic phenotype of pre-osteoblasts. Notably, cobalt-doped monetite induces biomimetic hypoxia, and it recapitulates relevance on the osteogenic phenotype required for the bone healing microenvironment. Thus, Co-doped monetite emerges as a biomimetic and “smart” advanced material for promising applications in bone injuries or the bioactive surface of dental implants in the future.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37984","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address developing novel biomimetic material able to camouflage osteogenic healing microenvironment, this study looked to synthesize and characterize a cobalt-doped monetite (CoCaP). After synthesizing, the samples were subjected to physicochemical and biological characterization a comprehensive structural analysis encompassing a suite of complementary techniques. Previously, our data show a validation and reveal distinct structural alterations from cobalt doping. Biologically, Co-doped monetite had no cytotoxic effects on osteoblasts up to 7 days; rather, it contributed to osteoblast adhesion and migration, here estimated by carrying out a wound healing assay. Thereafter, we have linked this phenomenon to an upregulation of cyclin-dependent kinases (CDKs) genes, and it was hypothesized to be related to the dynamic adhesion-related machinery requiring the upregulation of integrins, focal adhesion kinase (FAK), and Src. Complementarily, osteoblast differentiation was also investigated, and our data clearly show a strong stimulus of osteogenic phenotype, once it was shown a significantly increased upregulation of both classical osteogenic transcription factors Runx2 and Osterix, both in response to Co-doped monetite. Additionally, we observed extracellular matrix (ECM) remodeling requiring the activities of matrix metalloproteinase 9 (MMP9) zymogens, suggesting effective collagen turnover along osteoblast differentiation and mineralization. Collectively, our findings show the biological impact of Co-doped monetite on the osteogenic phenotype of pre-osteoblasts. Notably, cobalt-doped monetite induces biomimetic hypoxia, and it recapitulates relevance on the osteogenic phenotype required for the bone healing microenvironment. Thus, Co-doped monetite emerges as a biomimetic and “smart” advanced material for promising applications in bone injuries or the bioactive surface of dental implants in the future.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.