{"title":"载药多孔聚乳酸/聚环氧乙烷核壳微粒子的同轴电喷雾肺内给药研究","authors":"Chi Wang, Dandan Guo, Juntao Luo, Yingge Zhou","doi":"10.1002/jbm.a.37987","DOIUrl":null,"url":null,"abstract":"<p>Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37987","citationCount":"0","resultStr":"{\"title\":\"Coaxial Electrospray of Nanodrug-Loaded Porous Polylactic Acid/Poly(Ethylene Oxide) Core–Shell Microparticles for Intrapulmonary Drug Delivery\",\"authors\":\"Chi Wang, Dandan Guo, Juntao Luo, Yingge Zhou\",\"doi\":\"10.1002/jbm.a.37987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37987\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37987\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Coaxial Electrospray of Nanodrug-Loaded Porous Polylactic Acid/Poly(Ethylene Oxide) Core–Shell Microparticles for Intrapulmonary Drug Delivery
Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.