载药多孔聚乳酸/聚环氧乙烷核壳微粒子的同轴电喷雾肺内给药研究

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Chi Wang, Dandan Guo, Juntao Luo, Yingge Zhou
{"title":"载药多孔聚乳酸/聚环氧乙烷核壳微粒子的同轴电喷雾肺内给药研究","authors":"Chi Wang,&nbsp;Dandan Guo,&nbsp;Juntao Luo,&nbsp;Yingge Zhou","doi":"10.1002/jbm.a.37987","DOIUrl":null,"url":null,"abstract":"<p>Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37987","citationCount":"0","resultStr":"{\"title\":\"Coaxial Electrospray of Nanodrug-Loaded Porous Polylactic Acid/Poly(Ethylene Oxide) Core–Shell Microparticles for Intrapulmonary Drug Delivery\",\"authors\":\"Chi Wang,&nbsp;Dandan Guo,&nbsp;Juntao Luo,&nbsp;Yingge Zhou\",\"doi\":\"10.1002/jbm.a.37987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.</p>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37987\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37987\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物相容性纳米到微尺度颗粒为治疗应用提供了显著的优势,特别是在慢性阻塞性肺疾病(COPD)等肺部疾病的靶向和持续药物递送方面。本研究主要研究了利用电喷雾技术制备包封生物活性端突分子(TD)纳米药物载体的多孔核壳微粒子。通过优化颗粒尺寸(1 ~ 5 μm)和颗粒形态,设计微颗粒以增强肺部药物传递,促进肺深部沉积和药物控释。系统地研究了溶液粘度和表面张力对微粒形成的影响。结果表明,较高的聚合物浓度和控制的电喷雾参数可以获得均匀孔隙度的球形微颗粒,这对药物的持续释放至关重要。表面活性剂的加入降低了颗粒尺寸,增强了孔隙形成,但也带来了诸如形态变异等挑战。体外细胞毒性、溶血和药物释放研究证实了制备的微颗粒的生物相容性和治疗潜力。这些发现强调了电喷雾衍生的核壳微粒在非侵入性COPD治疗中的前景,需要进一步探索聚合物-溶剂相互作用和优化药物递送的配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coaxial Electrospray of Nanodrug-Loaded Porous Polylactic Acid/Poly(Ethylene Oxide) Core–Shell Microparticles for Intrapulmonary Drug Delivery

Coaxial Electrospray of Nanodrug-Loaded Porous Polylactic Acid/Poly(Ethylene Oxide) Core–Shell Microparticles for Intrapulmonary Drug Delivery

Biocompatible nano-to-microscale particles offer significant advantages for therapeutic applications, particularly in targeted and sustained drug delivery for lung diseases such as chronic obstructive pulmonary disease (COPD). This study focuses on the fabrication of porous core–shell microparticles encapsulating bioactive telodendrimer (TD) nanodrug carriers using electrospray technology. The microparticles were designed to enhance pulmonary drug delivery by optimizing particle size (1–5 μm) and morphology for deep lung deposition and controlled drug release. The effects of solution viscosity and surface tension on microparticle formation were systematically investigated. Results demonstrated that higher polymer concentration and controlled electrospray parameters yielded spherical microparticles with uniform porosity, essential for sustained drug release. Surfactant addition reduced particle size and enhanced pore formation but introduced challenges such as morphological variability. In vitro cytotoxicity, hemolysis, and drug release studies confirmed the biocompatibility and therapeutic potential of the fabricated microparticles. The findings highlight the promise of electrospray-derived core–shell microparticles for non-invasive COPD treatment, warranting further exploration into polymer-solvent interactions and formulation refinements for optimized drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信