Gyroid-Structured Scaffolds Guide Uniform Ossification and Modulate Vascular Morphology During Rat Calvarial Bone Defect Regeneration

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Guoyan Xian, Baptiste Charbonnier, Morad Bensidhoum, Esther Potier, Morgane Margottin, Puyi Sheng, Christine Chappard, Hervé Petite, Fani Anagnostou, David Marchat, Delphine Logeart-Avramoglou
{"title":"Gyroid-Structured Scaffolds Guide Uniform Ossification and Modulate Vascular Morphology During Rat Calvarial Bone Defect Regeneration","authors":"Guoyan Xian,&nbsp;Baptiste Charbonnier,&nbsp;Morad Bensidhoum,&nbsp;Esther Potier,&nbsp;Morgane Margottin,&nbsp;Puyi Sheng,&nbsp;Christine Chappard,&nbsp;Hervé Petite,&nbsp;Fani Anagnostou,&nbsp;David Marchat,&nbsp;Delphine Logeart-Avramoglou","doi":"10.1002/jbm.a.37978","DOIUrl":null,"url":null,"abstract":"<p>Bone repair procedures rely on osteoconductive material scaffolds that guide and promote bone ingrowth through their architecture. This study investigated how the bone formation and vascularization are modulated within gyroid macroporous scaffolds during the regeneration of rat calvarial bone defects. It compared scaffold-guided regeneration to spontaneous healing through 3D analysis of both ossification and vascularization. Two disc-shaped bioceramic scaffolds with either wide or narrow porous geometries were designed and fabricated to facilitate or limit bone ingrowth. While overall ossification dynamics were similar regardless of repair efficacy, scaffold presence modulated the ossification pattern, promoting bone formation throughout by conduction. The scaffolds also influenced vascular network morphology but not its density. Notably, 3D imaging revealed a negative correlation between vascularization and bone formation in scaffold-filled defects, while no correlation was found in empty defects. This result suggests that ossification during calvarial regeneration relies on additional pro-osteogenic factors beyond robust vascularization. These insights are valuable for optimizing scaffold-based strategies to enhance bone regeneration in calvarial defects.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37978","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37978","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone repair procedures rely on osteoconductive material scaffolds that guide and promote bone ingrowth through their architecture. This study investigated how the bone formation and vascularization are modulated within gyroid macroporous scaffolds during the regeneration of rat calvarial bone defects. It compared scaffold-guided regeneration to spontaneous healing through 3D analysis of both ossification and vascularization. Two disc-shaped bioceramic scaffolds with either wide or narrow porous geometries were designed and fabricated to facilitate or limit bone ingrowth. While overall ossification dynamics were similar regardless of repair efficacy, scaffold presence modulated the ossification pattern, promoting bone formation throughout by conduction. The scaffolds also influenced vascular network morphology but not its density. Notably, 3D imaging revealed a negative correlation between vascularization and bone formation in scaffold-filled defects, while no correlation was found in empty defects. This result suggests that ossification during calvarial regeneration relies on additional pro-osteogenic factors beyond robust vascularization. These insights are valuable for optimizing scaffold-based strategies to enhance bone regeneration in calvarial defects.

Abstract Image

螺旋结构支架在大鼠颅骨骨缺损再生过程中引导均匀骨化和调节血管形态
骨修复过程依赖于骨传导材料支架,通过其结构引导和促进骨向内生长。本研究研究了大鼠颅骨骨缺损再生过程中骨形成和血管形成在回状大孔支架内的调节。通过对骨化和血管形成的3D分析,比较了支架引导下的再生与自发愈合。设计和制造了两种具有宽或窄多孔几何形状的圆盘状生物陶瓷支架,以促进或限制骨向内生长。尽管无论修复效果如何,整体骨化动力学都是相似的,但支架的存在调节了骨化模式,通过传导促进了整个骨形成。支架也影响血管网形态,但不影响其密度。值得注意的是,3D成像显示支架填充缺损的血管化与骨形成呈负相关,而空心缺损的血管化与骨形成无相关。这一结果表明,颅骨再生过程中的骨化依赖于除强大的血管化之外的其他促成骨因素。这些见解对于优化基于支架的策略来增强颅骨缺损的骨再生是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信