Journal of Bioactive and Compatible Polymers最新文献

筛选
英文 中文
Methods for crosslinking and stabilization of chitosan structures for potential medical applications 壳聚糖结构的交联和稳定方法及其潜在的医疗应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-14 DOI: 10.1177/08839115221085738
A. Woźniak, M. Biernat
{"title":"Methods for crosslinking and stabilization of chitosan structures for potential medical applications","authors":"A. Woźniak, M. Biernat","doi":"10.1177/08839115221085738","DOIUrl":"https://doi.org/10.1177/08839115221085738","url":null,"abstract":"Chitosan is a well-known polymer widely used in tissue engineering and regenerative medicine. It is biocompatible, biodegradable, non-toxic, has antibacterial and osteoconductive properties. Chitosan is often used in the form of composites (with the participation of ceramic particles), membranes, hydrogels or nanoparticles. The problem with biomaterials is their low durability, rapid degradation, poor mechanical properties and cytotoxicity. Cross-linking or stabilization of such materials allows for solving these problems. It is important that the compounds used for this purpose exhibit limited or no toxicity. The presented article is a review and presents some methods of cross-linking/stabilization of chitosan structures. The analysis concerns low or non-cytotoxic cross-linking/stabilization methods. The discussed compounds used for the purpose of chitosan structure fixation are: cinnamaldehyde, genipin, L-aspartic acid, vanillin, sodium carbonate, sodium alginate, BGP, ethanol and TPP. There is discussed also a hydrothermal/dehydrothermal method which seems to be promising as it is more advantageous since no additional compounds are introduced into the structure.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83002480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study 含牛磺酸硫代壳聚糖水凝胶再生周围神经的体外和体内研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-01 DOI: 10.1177/08839115221085736
Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi
{"title":"Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study","authors":"Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi","doi":"10.1177/08839115221085736","DOIUrl":"https://doi.org/10.1177/08839115221085736","url":null,"abstract":"About 2.8% of trauma sick persons hurt from peripheral nerve damages, thus, numerous approaches are using to improve peripheral nerve regeneration. In the current study, the efficacy of several dosages of Taurine for peripheral nerve regeneration was evaluated. About 0.1%, 1%, and 10% (w/w) of Taurine were added into thiolated chitosan hydrogel and its features including morphology, swelling properties, weight loss, hemo-, and cytocompatibility were assessed. Hydrogels’ functionality was evaluated by injecting them into the crushed sciatic nerve of rats by using walking-foot-print analysis, Hot plate latency test, gastrocnemius muscle wet weight loss, and histopathological evaluation. Results demonstrated that the average pore size is in the area of 30–40 μm with interconnected pores and their weight loss was around 70% after 7 days. Results of blood compatibility and the MTT tests confirmed the biocompatibility of hydrogels. In vivo study illustrate thiolated Chitosan/Taurine hydrogels especially hydrogel includes 1% of Taurine enhanced sciatic nerve regeneration. In conclusion, Taurine can be used as a feasible treatment for peripheral nerve regeneration.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90931913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications 心血管用天然载药高分子膜的合成及体外评价
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-01 DOI: 10.1177/08839115221085735
Bakhtawar Ghafoor, Murtaza Najabat Ali
{"title":"Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications","authors":"Bakhtawar Ghafoor, Murtaza Najabat Ali","doi":"10.1177/08839115221085735","DOIUrl":"https://doi.org/10.1177/08839115221085735","url":null,"abstract":"Drug eluting stents (DES) can efficiently reduce the atherosclerosis and restenosis issues of coronary artery as compared to bare metal stents due to the presence of pharmaceutically active agent on their surface. Nevertheless, the arising safety concerns of DES such as delayed healing and late in stent restenosis and thrombus, has stirred the research efforts to improve the outcomes of the DES. In this connection, attention is being shifted from the use of synthetic drug to natural drug for DES. In the present work, natural compound loaded polymeric films were synthesized and their antioxidant and anticoagulation capabilities were assessed through in vitro testing. The potential of the drug loaded polymeric films to curb the production of free radicals was evaluated by carrying out antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The in vitro platelet adhesion was investigated through static platelet adhesion test while effect of synthesized films on intrinsic coagulation pathway was investigated through activated partially thromboplastin time (APTT). Moreover, to further evaluate the blood compatibility of the developed drug loaded films, in vitro hemolytic and anti-thrombolytic assays were carried out. The obtained results indicated that, incorporating herbal compounds such as ginger, magnolol and curcumin, in polymeric matrix (PVA) has significantly improved the blood compatibility of the polymeric films. Hence, it can be concluded that the synthesized drug loaded polymeric films have the potential capability to be used as a potential coating material for coating biomedical implants with good anticoagulation and antioxidant property to cater the cardiovascular issues such as atherosclerosis, restenosis and thrombus formation.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85136877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Production of alginate films containing Hypericum perforatum extract as an antibacterial and antioxidant wound dressing material 含贯叶连翘提取物的海藻酸盐膜的生产,作为抗菌和抗氧化的伤口敷料
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-02-08 DOI: 10.1177/08839115211073155
Betül Mutlu, F. Erci, Rabia Çakır Koç
{"title":"Production of alginate films containing Hypericum perforatum extract as an antibacterial and antioxidant wound dressing material","authors":"Betül Mutlu, F. Erci, Rabia Çakır Koç","doi":"10.1177/08839115211073155","DOIUrl":"https://doi.org/10.1177/08839115211073155","url":null,"abstract":"The incorporation of herbal extracts in wound dressing materials is an important concept that has been researched recently. In this study, alginate films incorporated in the various ratio (0.25–1% v/v) of Hypericum perforatum extract (HPE) for potential applications of wound dressing were successfully prepared by solvent-casting method. The obtained films were examined for cytotoxicity, in vitro wound healing potential, swelling behavior, antioxidant, and antibacterial properties. When compared to the alginate film (Al) alone, HPE incorporated alginate films (HPE/Al) exhibit improved antioxidant properties according to the results of CUPRAC assay and antioxidant activity increases with the rate of HPE. Also, HPE/Al films exhibited antibacterial activity against E. coli and S. aureus, and addition with the HPE extract into films significantly increased the antibacterial activity against S. aureus. All film samples had no cytotoxic effects on fibroblast cell line and HPE/Al films showed a proliferative effect with high extract concentrations (1%) compared to extract free-films. Also, scratch assay results show that films containing 0.5% (v/v) HPE may have a positive effect on wound healing. The results have shown that the newly developed HPE incorporated alginate films are a candidate as antibacterial, and antioxidant wound dressing for use on burn or excision wounds.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91175275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Exploring polymeric biomaterials in developing neural prostheses 高分子生物材料在神经修复中的应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-02-01 DOI: 10.1177/08839115221075843
Thayvee Geetha Bharathi Silvaragi, S. Vigneswari, V. Murugaiyah, Amirul Al-Ashraf, S. Ramakrishna
{"title":"Exploring polymeric biomaterials in developing neural prostheses","authors":"Thayvee Geetha Bharathi Silvaragi, S. Vigneswari, V. Murugaiyah, Amirul Al-Ashraf, S. Ramakrishna","doi":"10.1177/08839115221075843","DOIUrl":"https://doi.org/10.1177/08839115221075843","url":null,"abstract":"Neuroprosthetics, with a range of applications such as cognitive, auditory, pain relief, recording, motor, and visual prosthetics have emerged as a promising field in recent years. However, poor electrical conductivity, a high disparity between tissue and interfaces and the onset of reactive gliosis post-implantation remains major challenges in the development of neuroprostheses. The choice of biomaterials in designing the neural interfaces’ in neuroprosthetic applications is of high importance, as the overall sustained performance of neuroprosthetic devices is based on the features of materials used for the neural interfaces. Numerous biomaterials, such as metals and carbon-based materials, have been used in neuroprosthetics thus far. Nonetheless, neuroprosthetics made from polymeric biomaterials are in high demand due to their high biocompatibility, conductivity, and biostability. Furthermore, polymeric biomaterials can be used as a hybrid design to overcome the limitations of other co-biomaterials. This article makes an attempt to review the polymeric biomaterials involved in this cutting-edge technology utilized for different purposes such as substrates, coatings, and miniaturization of electrodes, that might help in enriching our understanding on neuroprosthetics.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82120330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Porous polysaccharide scaffolds: Proof of concept study on wound healing and stem cell differentiation 多孔多糖支架:伤口愈合和干细胞分化的概念验证研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-02-01 DOI: 10.1177/08839115211073156
Preethi Gopalakrishnan Usha, Sreekutty Jalajakumari, Unnikrishnan Babukuttan Sheela, D. Mohan, Archana Meena Gopalakrishnan, Maya Sreeranganathan, Raveendran Kuttan Pillai, C. Berry, K. Maiti, Sreelekha Therakathinal Thankappan
{"title":"Porous polysaccharide scaffolds: Proof of concept study on wound healing and stem cell differentiation","authors":"Preethi Gopalakrishnan Usha, Sreekutty Jalajakumari, Unnikrishnan Babukuttan Sheela, D. Mohan, Archana Meena Gopalakrishnan, Maya Sreeranganathan, Raveendran Kuttan Pillai, C. Berry, K. Maiti, Sreelekha Therakathinal Thankappan","doi":"10.1177/08839115211073156","DOIUrl":"https://doi.org/10.1177/08839115211073156","url":null,"abstract":"The combination of desirable polymer properties and methods for synthesis, utilizing materials with various architectures, could be adopted for diverse clinical applications such as wound healing as well as stem cell differentiation. Natural polymers, particularly polysaccharides, are biocompatible and are reported to have structural similarities with extracellular matrix components. In this scenario, the present study fabricated a porous scaffold using a polysaccharide, galactoxyloglucan, isolated from Tamarind seed kernel, and studied its applications in stem cell attachment and wound healing. In-growth of human mesenchymal stem cells (hMSCs) presented a rounded morphology with increased proliferation. Scaffolds were surface-functionalized with silver nanoparticles to increase the antibacterial activity and the wound healing potential evaluated in preclinical mouse models. The current study provides an insight into how stem cells attach and grow in a naturally derived low-cost polysaccharide scaffold with antibacterial, biocompatible, and biodegradable properties.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75687628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sunscreen nanoparticles polymer based on prolonged period of protection 一种基于延长保护期的纳米粒子聚合物防晒霜
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2021-12-17 DOI: 10.1177/08839115211061741
Ebtesam A. Mohamad, Monira M Rageh, M. M. Darwish
{"title":"A sunscreen nanoparticles polymer based on prolonged period of protection","authors":"Ebtesam A. Mohamad, Monira M Rageh, M. M. Darwish","doi":"10.1177/08839115211061741","DOIUrl":"https://doi.org/10.1177/08839115211061741","url":null,"abstract":"UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73383280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates 聚己内酯-壳聚糖-生物玻璃纳米复合涂层在不锈钢(316L)基体上电泳沉积的研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2021-12-09 DOI: 10.1177/08839115211063506
Zahra Sadeghinia, R. Emadi, Fatemeh Shamoradi
{"title":"A study of the electrophoretic deposition of polycaprolactone-chitosan-bioglass nanocomposite coating on stainless steel (316L) substrates","authors":"Zahra Sadeghinia, R. Emadi, Fatemeh Shamoradi","doi":"10.1177/08839115211063506","DOIUrl":"https://doi.org/10.1177/08839115211063506","url":null,"abstract":"In this research, bioglass nanoparticles were synthesized via sol-gel method and a polycaprolactone-chitosan-bioglass nanocomposite coating was formed on SS316L substrate using electrophoretic deposition method. Then, the effects of voltage and deposition time on morphology, thickness, roughness, and wettability of final coating were investigated. Finally, biocompatibility and toxicity of the coating were evaluated. The results showed that increase of both time and voltage enhanced the thickness, roughness, and wettability of coating. Also, increase of deposition time increased the agglomeration. Therefore, it can be concluded that voltage of 20 V and time of 10 min are suitable for the formation of a uniform agglomerate-free coating. The presence of bioglass nanoparticles also led to the increase of roughness and improvement of polycaprolactone hydrophobicity. The results also showed higher bioactivity in polycaprolactone-chitosan-1% bioglass nanocomposite coating sample. This sample had a roughness (Ra) of 1.048 ± 0.037 μm and thickness of 2.54 ± 0.14 μm. In summary, the results indicated that coating of polycaprolactone-chitosan-bioglass nanocomposite on SS316L substrate could be a suitable surface treatment to increase its in vivo bioactivity and biocompatibility.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78242884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing 新型生物活性镁掺杂非桑蚕丝素纳米纤维在伤口愈合过程中加速皮肤屏障修复
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2021-11-23 DOI: 10.1177/08839115211061737
S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit
{"title":"Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing","authors":"S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit","doi":"10.1177/08839115211061737","DOIUrl":"https://doi.org/10.1177/08839115211061737","url":null,"abstract":"Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80347951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Cell proliferative properties of Forcespinning® nopal composite nanofibers Forcespinning®nopal复合纳米纤维的细胞增殖特性
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2021-11-23 DOI: 10.1177/08839115211060404
Cristobal Rodriguez, Victoria Padilla, K. Lozano, Fariha Ahmad, Alejandra Chapa, Alexa Villarreal, Andrew McDonald, L. Materon, R. Gilkerson
{"title":"Cell proliferative properties of Forcespinning® nopal composite nanofibers","authors":"Cristobal Rodriguez, Victoria Padilla, K. Lozano, Fariha Ahmad, Alejandra Chapa, Alexa Villarreal, Andrew McDonald, L. Materon, R. Gilkerson","doi":"10.1177/08839115211060404","DOIUrl":"https://doi.org/10.1177/08839115211060404","url":null,"abstract":"In this study, Forcespinning® was used to produce nanofibers composed of Opuntia cochenillifera, “nopal,” mucilage (N) extract, chitosan (CH), and pullulan (PL) (N/CH/PL). These nopal-incorporating nanofibers were examined for their ability to sustain adhesion and proliferation of mouse embryonic fibroblast (NIH 3T3) cells. After a 6-day incubation period, N/CH/PL nanofibers displayed robust cell proliferation, with continued cell growth after an extended incubation period of 14 days. These results demonstrate that natural bioactive compounds can be combined with biodegradable polymers to provide an enhanced environment for cell growth, suggesting potential natural active ingredients as alternatives in wound dressings.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89610621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信