Journal of Bioactive and Compatible Polymers最新文献

筛选
英文 中文
CMC-based hydrogels loaded with Hypericum perforatum nanoemulsion for potential wound dressing applications 含贯叶连翘纳米乳的cmc基水凝胶在伤口敷料中的潜在应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-05-17 DOI: 10.1177/08839115221098059
M. Moradi, Aboulfazl Barati, S. Moradi, M. Arjomandzadegan
{"title":"CMC-based hydrogels loaded with Hypericum perforatum nanoemulsion for potential wound dressing applications","authors":"M. Moradi, Aboulfazl Barati, S. Moradi, M. Arjomandzadegan","doi":"10.1177/08839115221098059","DOIUrl":"https://doi.org/10.1177/08839115221098059","url":null,"abstract":"Wound healing is a complicated process requiring appropriate environment to accelerate healing process. In the recent years, many wound dressings have been developed for treating various kinds of wounds. In this study, we aimed to develop a novel dressing with high ability of burn wound healing and minimum side effects. Carboxymethyl cellulose (CMC) based hydrogels containing Hypericum perforatum were developed by grafting methacrylic acid and acrylamide onto CMC to produce a good mechanical strength dressing. Covalent crosslinking, which is responsible for stable mechanical structure, led to a 3D structure with appropriate water vapor transmission rate (2950 g/m2/day), controlled drug release (33% in 78 h), and great burn healing ability (almost complete healing in 10 day). The hydrogel has proper antimicrobial activity against the tested microorganisms. Zone of inhibition against E.coli was the higher in comparison with S. aureus and Candida. Minimum inhibitory concentration (MIC) for C. albicans, S. aureus, and E. coli were as 6, 4, and 5 mg/ml of H. perforatum. In vivo experiments on rats revealed that wound healing process by loaded hydrogels was faster in comparison with control group. All the results indicated that prepared hydrogel has the capability to accelerate burn wound healing process.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"5 1","pages":"316 - 331"},"PeriodicalIF":1.7,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89249153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells. 牙本质基质中没食子酸原花青素表现出生物相容性并诱导牙干细胞分化。
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-05-01 DOI: 10.1177/08839115221095154
Daniel Kulakowski, Rasika M Phansalkar, Ariene A Leme-Kraus, James McAlpine, Shao-Nong Chen, Guido F Pauli, Sriram Ravindran, Ana K Bedran-Russo
{"title":"Galloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells.","authors":"Daniel Kulakowski,&nbsp;Rasika M Phansalkar,&nbsp;Ariene A Leme-Kraus,&nbsp;James McAlpine,&nbsp;Shao-Nong Chen,&nbsp;Guido F Pauli,&nbsp;Sriram Ravindran,&nbsp;Ana K Bedran-Russo","doi":"10.1177/08839115221095154","DOIUrl":"https://doi.org/10.1177/08839115221095154","url":null,"abstract":"<p><strong>Aim: </strong>Grape seed extract contains a complex mixture of proanthocyanidins (PACs), a plant biopolymer used as a biomaterial to improve reparative and preventive dental therapies. Co-polymerization of PACs with type I collagen mechanically reinforces the dentin extracellular matrix. This study assessed the biocompatibility of PACs from grape seed extract on dental pulp stem cells (DPSCs) in a model simulating leaching through dentin to the pulp cavity. The aim was to determine the type of PACs (galloylated vs. non-galloylated) within grape seed extract that are most compatible with dental pulp tissue.</p><p><strong>Methodology: </strong>Human demineralized dentin was treated with selectively-enriched dimeric PACs prepared from grape seed extract using liquid-liquid chromatography. DPSCs were cultured within a 2D matrix and exposed to PAC-treated dentin extracellular matrix. Cell proliferation was measured using the MTS assay and expression of odontoblastic genes was analyzed by qRT-PCR. Categorization of PACs leaching from dentin was performed using HPLC-MS.</p><p><strong>Results: </strong>Enriched dimeric fractions containing galloylated PACs increased the expression of certain odontoblastic genes in DPSCs, including Runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP2), basic fibroblast growth factor (FGF2), dentin sialophosphoprotein (DSPP) and collagen, type I, alpha 1 (COLI). Galloylated dimeric PACs also exhibited minor effects on DPSC proliferation, resulting in a decrease compared to control after five days of treatment. The non-galloylated dimer fraction had no effect on these genes or on DPSC proliferation.</p><p><strong>Conclusions: </strong>Galloylated PACs are biocompatible with DPSCs and may exert a beneficial effect on cells within dental pulp tissue. The observed increase in odontoblastic genes induced by galloylated PACs together with a decrease in DPSC proliferation is suggestive of a shift toward cell differentiation. This data supports the use of dimeric PACs as a safe biomaterial, with galloylated dimeric PACs exhibiting potential benefits to odontoblasts supporting dentin regeneration.</p>","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"37 3","pages":"220-230"},"PeriodicalIF":1.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353770/pdf/nihms-1857444.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy 通过叶酸靶向生物相容性聚合物纳米颗粒递送miRNA-126用于有效的肺癌治疗
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-05-01 DOI: 10.1177/08839115221095152
Forough N Golafzani, A. Vaziri, M. Javanmardi, Fatemeh Seyfan, M. Yazdanifar, Sepideh Khaleghi
{"title":"Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy","authors":"Forough N Golafzani, A. Vaziri, M. Javanmardi, Fatemeh Seyfan, M. Yazdanifar, Sepideh Khaleghi","doi":"10.1177/08839115221095152","DOIUrl":"https://doi.org/10.1177/08839115221095152","url":null,"abstract":"Objective: Nanoparticle-based drug delivery systems (DDSs) have been playing a considerable role in the eradication of cancer. In this experimental study, we designed and synthesized folic acid (FA)-decorated chitosan (CS) nanocarrier for targeted delivery of miR-126 (as a therapeutic agent) to lung cancer A549 cells. Materials and methods: Therefore, the FA-CS-miR-126 nano-complex was perfectly developed and characterized by various analytical devices such as Fourier transform infrared (FT-IR) and dynamic light scattering (DLS) spectroscopies and as well as transmission electron microscopy (TEM). The size was determined lower than 100 nm for synthetics. Then, a gel retardation assay was performed to investigate the entrapment efficiency of nano-complex. Afterward, the sort of in vitro assays was implemented on A549 (FA receptor-positive lung cancer cell line) and MRC5 (normal human diploid cell line) to evaluate the therapeutic efficiency of FA-CS-miR-126. Results: As the cell viability (40.7 ± 2.98% cell viability after 72 h treatment with 500 nM), migration assay (weaker migration after 24 h and 48 h), apoptotic and autophagy genes expression level (Caspse9: sixfolds; BAX: 17 folds; ATG5: fourfolds; and BECLIN1: threefolds more than the control group), the reduced expression level of EGF-L7, as a target gene for miR-126 was evaluated by Real-Time PCR too, then, cell cycle arrest (8.66% of cells in sub-G1 phase), and cell apoptosis assay (21.0% of cancer cell in late apoptosis phase) were scrutinized. Conclusion: These results are remarkably approved the biocompatible and efficient performance of FA-CS-miR-126 as a promising DDS. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"21 1","pages":"168 - 188"},"PeriodicalIF":1.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88594984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis 绿色化学方法在聚氨酯膜表面涂覆纳米银及其对表皮葡萄球菌的抗菌活性研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-05-01 DOI: 10.1177/08839115221098056
Filiz Kara, E. Aksoy, S. Aksoy, N. Hasirci
{"title":"Coating of silver nanoparticles on polyurethane film surface by green chemistry approach and investigation of antibacterial activity against S. epidermidis","authors":"Filiz Kara, E. Aksoy, S. Aksoy, N. Hasirci","doi":"10.1177/08839115221098056","DOIUrl":"https://doi.org/10.1177/08839115221098056","url":null,"abstract":"Silver nanoparticles with potential antibacterial properties are included in biomaterials for the production of medical devices, which are used for diagnoses or treatment purposes. The aim of the current study was coating the polyurethane (PU) films with silver nanoparticles (AgNPs) due to their antibacterial efficacy. PU films were first modified by chitosan (CH), treated with AgNO3 to let CH chelate with silver ions, and then treated with vitamin-C (vit C) or glucose (Glu) to reduce the adsorbed ions to atomic silver to form AgNPs. The surfaces of the films were examined by ATR-FTIR, XPS, XRD, and SEM. Chemical bond formation between CH and Ag ions and AgNPs were determined by ATR-FTIR. Meanwhile, XPS and SEM analyses proved the presence of reduced metallic silver and nanoparticles on the film surfaces, respectively. According to the SEM analyses, a homogeneous distribution of AgNPs, with sizes 99–214 nm and 37–54 nm, on the film surfaces were obtained depending on Glu or vit C reduction, respectively. The films presented excellent antibacterial performance against Gram positive Staphylococcus epidermidis (S. epidermidis). These results suggested that the mentioned green technology can be easily applied to obtain AgNP coated polymeric surfaces with very high antibacterial efficacy. Although there are some studies dealing with AgNP formation on PU sponges or fibers, to the best of our knowledge, this is the first study showing AgNP formation on the CH conjugated PU films.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"8 1","pages":"205 - 219"},"PeriodicalIF":1.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84986669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Antheraea pernyi silk fibroin-coated adenovirus as a VEGF165-Ang-1 dual gene delivery vector 柞蚕丝素包被腺病毒作为vegf165 - ang1双基因传递载体的研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-05-01 DOI: 10.1177/08839115221095254
Linling Huang, Yi Jiang, Xueping Liu, Ying Guo, Yanfei Feng, Peng Pan, Mingzhong Li, Yu Liu
{"title":"Antheraea pernyi silk fibroin-coated adenovirus as a VEGF165-Ang-1 dual gene delivery vector","authors":"Linling Huang, Yi Jiang, Xueping Liu, Ying Guo, Yanfei Feng, Peng Pan, Mingzhong Li, Yu Liu","doi":"10.1177/08839115221095254","DOIUrl":"https://doi.org/10.1177/08839115221095254","url":null,"abstract":"Vascularization is a key challenge in the regeneration of tissues containing blood vessels. In this study, spermine was used for cationic modification of Antheraea pernyi silk fibroin (ASF) to synthesize cationized ASF (CASF). CASF/Ad complexes prepared by coating adenovirus (Ad) with CASF were used as delivery vectors for vascular endothelial growth factor 165 and angiopoietin-1 dual genes. The results showed that the zeta potential of the Ad was reversed from −7.75 mV to approximately +8.40 mV after CASF coating, and the sizes of the CASF/Ad complexes were 200 to 290 nm. Furthermore, human umbilical vein endothelial cells HUVECs were cocultured and infected with CASF/Ad in vitro. The results of confocal laser scanning microscopy, flow cytometry and CCK-8 assay showed that coating Ad with CASF at concentration of 20 and 50 µg/mL not only reduced the cytotoxicity of naked Ad, but also significantly promoted cell proliferation. Therefore, the CASF/Ad complexes could be beneficial to reduce the dosage of Ad and the potential toxicity risk of high doses of Ad in vivo, which has the potential of application to promote vascular network regeneration.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"17 1","pages":"189 - 204"},"PeriodicalIF":1.7,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82064438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Methods for crosslinking and stabilization of chitosan structures for potential medical applications 壳聚糖结构的交联和稳定方法及其潜在的医疗应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-14 DOI: 10.1177/08839115221085738
A. Woźniak, M. Biernat
{"title":"Methods for crosslinking and stabilization of chitosan structures for potential medical applications","authors":"A. Woźniak, M. Biernat","doi":"10.1177/08839115221085738","DOIUrl":"https://doi.org/10.1177/08839115221085738","url":null,"abstract":"Chitosan is a well-known polymer widely used in tissue engineering and regenerative medicine. It is biocompatible, biodegradable, non-toxic, has antibacterial and osteoconductive properties. Chitosan is often used in the form of composites (with the participation of ceramic particles), membranes, hydrogels or nanoparticles. The problem with biomaterials is their low durability, rapid degradation, poor mechanical properties and cytotoxicity. Cross-linking or stabilization of such materials allows for solving these problems. It is important that the compounds used for this purpose exhibit limited or no toxicity. The presented article is a review and presents some methods of cross-linking/stabilization of chitosan structures. The analysis concerns low or non-cytotoxic cross-linking/stabilization methods. The discussed compounds used for the purpose of chitosan structure fixation are: cinnamaldehyde, genipin, L-aspartic acid, vanillin, sodium carbonate, sodium alginate, BGP, ethanol and TPP. There is discussed also a hydrothermal/dehydrothermal method which seems to be promising as it is more advantageous since no additional compounds are introduced into the structure.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"36 1","pages":"151 - 167"},"PeriodicalIF":1.7,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83002480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study 含牛磺酸硫代壳聚糖水凝胶再生周围神经的体外和体内研究
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-01 DOI: 10.1177/08839115221085736
Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi
{"title":"Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study","authors":"Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi","doi":"10.1177/08839115221085736","DOIUrl":"https://doi.org/10.1177/08839115221085736","url":null,"abstract":"About 2.8% of trauma sick persons hurt from peripheral nerve damages, thus, numerous approaches are using to improve peripheral nerve regeneration. In the current study, the efficacy of several dosages of Taurine for peripheral nerve regeneration was evaluated. About 0.1%, 1%, and 10% (w/w) of Taurine were added into thiolated chitosan hydrogel and its features including morphology, swelling properties, weight loss, hemo-, and cytocompatibility were assessed. Hydrogels’ functionality was evaluated by injecting them into the crushed sciatic nerve of rats by using walking-foot-print analysis, Hot plate latency test, gastrocnemius muscle wet weight loss, and histopathological evaluation. Results demonstrated that the average pore size is in the area of 30–40 μm with interconnected pores and their weight loss was around 70% after 7 days. Results of blood compatibility and the MTT tests confirmed the biocompatibility of hydrogels. In vivo study illustrate thiolated Chitosan/Taurine hydrogels especially hydrogel includes 1% of Taurine enhanced sciatic nerve regeneration. In conclusion, Taurine can be used as a feasible treatment for peripheral nerve regeneration.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"79 3 1","pages":"85 - 97"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90931913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications 心血管用天然载药高分子膜的合成及体外评价
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-01 DOI: 10.1177/08839115221085735
Bakhtawar Ghafoor, Murtaza Najabat Ali
{"title":"Synthesis and in vitro evaluation of natural drug loaded polymeric films for cardiovascular applications","authors":"Bakhtawar Ghafoor, Murtaza Najabat Ali","doi":"10.1177/08839115221085735","DOIUrl":"https://doi.org/10.1177/08839115221085735","url":null,"abstract":"Drug eluting stents (DES) can efficiently reduce the atherosclerosis and restenosis issues of coronary artery as compared to bare metal stents due to the presence of pharmaceutically active agent on their surface. Nevertheless, the arising safety concerns of DES such as delayed healing and late in stent restenosis and thrombus, has stirred the research efforts to improve the outcomes of the DES. In this connection, attention is being shifted from the use of synthetic drug to natural drug for DES. In the present work, natural compound loaded polymeric films were synthesized and their antioxidant and anticoagulation capabilities were assessed through in vitro testing. The potential of the drug loaded polymeric films to curb the production of free radicals was evaluated by carrying out antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The in vitro platelet adhesion was investigated through static platelet adhesion test while effect of synthesized films on intrinsic coagulation pathway was investigated through activated partially thromboplastin time (APTT). Moreover, to further evaluate the blood compatibility of the developed drug loaded films, in vitro hemolytic and anti-thrombolytic assays were carried out. The obtained results indicated that, incorporating herbal compounds such as ginger, magnolol and curcumin, in polymeric matrix (PVA) has significantly improved the blood compatibility of the polymeric films. Hence, it can be concluded that the synthesized drug loaded polymeric films have the potential capability to be used as a potential coating material for coating biomedical implants with good anticoagulation and antioxidant property to cater the cardiovascular issues such as atherosclerosis, restenosis and thrombus formation.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"51 1","pages":"98 - 114"},"PeriodicalIF":1.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85136877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Production of alginate films containing Hypericum perforatum extract as an antibacterial and antioxidant wound dressing material 含贯叶连翘提取物的海藻酸盐膜的生产,作为抗菌和抗氧化的伤口敷料
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-02-08 DOI: 10.1177/08839115211073155
Betül Mutlu, F. Erci, Rabia Çakır Koç
{"title":"Production of alginate films containing Hypericum perforatum extract as an antibacterial and antioxidant wound dressing material","authors":"Betül Mutlu, F. Erci, Rabia Çakır Koç","doi":"10.1177/08839115211073155","DOIUrl":"https://doi.org/10.1177/08839115211073155","url":null,"abstract":"The incorporation of herbal extracts in wound dressing materials is an important concept that has been researched recently. In this study, alginate films incorporated in the various ratio (0.25–1% v/v) of Hypericum perforatum extract (HPE) for potential applications of wound dressing were successfully prepared by solvent-casting method. The obtained films were examined for cytotoxicity, in vitro wound healing potential, swelling behavior, antioxidant, and antibacterial properties. When compared to the alginate film (Al) alone, HPE incorporated alginate films (HPE/Al) exhibit improved antioxidant properties according to the results of CUPRAC assay and antioxidant activity increases with the rate of HPE. Also, HPE/Al films exhibited antibacterial activity against E. coli and S. aureus, and addition with the HPE extract into films significantly increased the antibacterial activity against S. aureus. All film samples had no cytotoxic effects on fibroblast cell line and HPE/Al films showed a proliferative effect with high extract concentrations (1%) compared to extract free-films. Also, scratch assay results show that films containing 0.5% (v/v) HPE may have a positive effect on wound healing. The results have shown that the newly developed HPE incorporated alginate films are a candidate as antibacterial, and antioxidant wound dressing for use on burn or excision wounds.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"41 1","pages":"134 - 148"},"PeriodicalIF":1.7,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91175275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Exploring polymeric biomaterials in developing neural prostheses 高分子生物材料在神经修复中的应用
IF 1.7 4区 生物学
Journal of Bioactive and Compatible Polymers Pub Date : 2022-02-01 DOI: 10.1177/08839115221075843
Thayvee Geetha Bharathi Silvaragi, S. Vigneswari, V. Murugaiyah, Amirul Al-Ashraf, S. Ramakrishna
{"title":"Exploring polymeric biomaterials in developing neural prostheses","authors":"Thayvee Geetha Bharathi Silvaragi, S. Vigneswari, V. Murugaiyah, Amirul Al-Ashraf, S. Ramakrishna","doi":"10.1177/08839115221075843","DOIUrl":"https://doi.org/10.1177/08839115221075843","url":null,"abstract":"Neuroprosthetics, with a range of applications such as cognitive, auditory, pain relief, recording, motor, and visual prosthetics have emerged as a promising field in recent years. However, poor electrical conductivity, a high disparity between tissue and interfaces and the onset of reactive gliosis post-implantation remains major challenges in the development of neuroprostheses. The choice of biomaterials in designing the neural interfaces’ in neuroprosthetic applications is of high importance, as the overall sustained performance of neuroprosthetic devices is based on the features of materials used for the neural interfaces. Numerous biomaterials, such as metals and carbon-based materials, have been used in neuroprosthetics thus far. Nonetheless, neuroprosthetics made from polymeric biomaterials are in high demand due to their high biocompatibility, conductivity, and biostability. Furthermore, polymeric biomaterials can be used as a hybrid design to overcome the limitations of other co-biomaterials. This article makes an attempt to review the polymeric biomaterials involved in this cutting-edge technology utilized for different purposes such as substrates, coatings, and miniaturization of electrodes, that might help in enriching our understanding on neuroprosthetics.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"8 1","pages":"75 - 84"},"PeriodicalIF":1.7,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82120330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信