Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Forough N Golafzani, A. Vaziri, M. Javanmardi, Fatemeh Seyfan, M. Yazdanifar, Sepideh Khaleghi
{"title":"Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy","authors":"Forough N Golafzani, A. Vaziri, M. Javanmardi, Fatemeh Seyfan, M. Yazdanifar, Sepideh Khaleghi","doi":"10.1177/08839115221095152","DOIUrl":null,"url":null,"abstract":"Objective: Nanoparticle-based drug delivery systems (DDSs) have been playing a considerable role in the eradication of cancer. In this experimental study, we designed and synthesized folic acid (FA)-decorated chitosan (CS) nanocarrier for targeted delivery of miR-126 (as a therapeutic agent) to lung cancer A549 cells. Materials and methods: Therefore, the FA-CS-miR-126 nano-complex was perfectly developed and characterized by various analytical devices such as Fourier transform infrared (FT-IR) and dynamic light scattering (DLS) spectroscopies and as well as transmission electron microscopy (TEM). The size was determined lower than 100 nm for synthetics. Then, a gel retardation assay was performed to investigate the entrapment efficiency of nano-complex. Afterward, the sort of in vitro assays was implemented on A549 (FA receptor-positive lung cancer cell line) and MRC5 (normal human diploid cell line) to evaluate the therapeutic efficiency of FA-CS-miR-126. Results: As the cell viability (40.7 ± 2.98% cell viability after 72 h treatment with 500 nM), migration assay (weaker migration after 24 h and 48 h), apoptotic and autophagy genes expression level (Caspse9: sixfolds; BAX: 17 folds; ATG5: fourfolds; and BECLIN1: threefolds more than the control group), the reduced expression level of EGF-L7, as a target gene for miR-126 was evaluated by Real-Time PCR too, then, cell cycle arrest (8.66% of cells in sub-G1 phase), and cell apoptosis assay (21.0% of cancer cell in late apoptosis phase) were scrutinized. Conclusion: These results are remarkably approved the biocompatible and efficient performance of FA-CS-miR-126 as a promising DDS. Graphical Abstract","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221095152","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Objective: Nanoparticle-based drug delivery systems (DDSs) have been playing a considerable role in the eradication of cancer. In this experimental study, we designed and synthesized folic acid (FA)-decorated chitosan (CS) nanocarrier for targeted delivery of miR-126 (as a therapeutic agent) to lung cancer A549 cells. Materials and methods: Therefore, the FA-CS-miR-126 nano-complex was perfectly developed and characterized by various analytical devices such as Fourier transform infrared (FT-IR) and dynamic light scattering (DLS) spectroscopies and as well as transmission electron microscopy (TEM). The size was determined lower than 100 nm for synthetics. Then, a gel retardation assay was performed to investigate the entrapment efficiency of nano-complex. Afterward, the sort of in vitro assays was implemented on A549 (FA receptor-positive lung cancer cell line) and MRC5 (normal human diploid cell line) to evaluate the therapeutic efficiency of FA-CS-miR-126. Results: As the cell viability (40.7 ± 2.98% cell viability after 72 h treatment with 500 nM), migration assay (weaker migration after 24 h and 48 h), apoptotic and autophagy genes expression level (Caspse9: sixfolds; BAX: 17 folds; ATG5: fourfolds; and BECLIN1: threefolds more than the control group), the reduced expression level of EGF-L7, as a target gene for miR-126 was evaluated by Real-Time PCR too, then, cell cycle arrest (8.66% of cells in sub-G1 phase), and cell apoptosis assay (21.0% of cancer cell in late apoptosis phase) were scrutinized. Conclusion: These results are remarkably approved the biocompatible and efficient performance of FA-CS-miR-126 as a promising DDS. Graphical Abstract
通过叶酸靶向生物相容性聚合物纳米颗粒递送miRNA-126用于有效的肺癌治疗
目的:纳米颗粒给药系统(dds)在癌症的根除中发挥着重要的作用。在本实验研究中,我们设计并合成了叶酸修饰的壳聚糖(CS)纳米载体,用于靶向递送miR-126(作为治疗剂)到肺癌A549细胞。材料和方法:因此,FA-CS-miR-126纳米配合物被完美地开发并通过傅立叶变换红外(FT-IR)和动态光散射(DLS)光谱以及透射电子显微镜(TEM)等各种分析设备进行了表征。合成材料的尺寸小于100 nm。然后,通过凝胶阻滞实验考察了纳米复合物的包封效率。随后,对A549 (FA受体阳性肺癌细胞系)和MRC5(正常人二倍体细胞系)进行体外实验,以评估FA- cs - mir -126的治疗效果。结果:细胞活力(500 nM处理72 h后细胞活力为40.7±2.98%),迁移率(24 h和48 h后迁移较弱),凋亡和自噬基因表达水平(Caspse9: 6倍;BAX: 17倍;ATG5:四倍;作为miR-126靶基因的EGF-L7表达水平的降低也通过Real-Time PCR进行了评估,然后进行了细胞周期阻滞(亚g1期细胞的8.66%)和细胞凋亡试验(晚期凋亡期细胞的21.0%)的研究。结论:这些结果显著地证实了FA-CS-miR-126作为一种有前景的DDS的生物相容性和高效性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信