Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran
{"title":"Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel","authors":"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran","doi":"10.1177/08839115211053926","DOIUrl":null,"url":null,"abstract":"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"20 1","pages":"3 - 16"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115211053926","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.
挤压法制备脂质体纳米载体促进紫杉醇肿瘤蓄积
紫杉醇(PTX)具有广谱、有效的抗癌活性,但其低溶解度和副作用是其临床应用的主要挑战。本研究合成了一种紫杉醇包封纳米脂质体(NLips-PTX)载体模型,以增强PTX的溶解度,增加其在肿瘤部位的被动蓄积。以大豆卵磷脂与胆固醇的比例为9:1,采用薄膜水化后挤压法制备纳米脂质体。制备的球形NLips-PTX脂质体平均粒径约为150 nm,均匀度高,通过DLS和TEM对其进行了表征。高效液相色谱法测定NLips的PTX负载效率约为85%。通过体外细胞摄取和细胞毒性研究,NLips-PTX对乳腺癌细胞(MCF-7)也显示出剂量和时间依赖性的治疗效果。该研究表明,挤压是一种简单方便的纳米化和均质脂质体悬浮液的方法,可以有效地将药物输送到目标肿瘤部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信