{"title":"A sunscreen nanoparticles polymer based on prolonged period of protection","authors":"Ebtesam A. Mohamad, Monira M Rageh, M. M. Darwish","doi":"10.1177/08839115211061741","DOIUrl":null,"url":null,"abstract":"UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"8 1","pages":"17 - 27"},"PeriodicalIF":2.1000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115211061741","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 12
Abstract
UV rays are one of the most dangerous factors that harm the skin. There is continuous improvement in getting an effective sunscreen that protects the skin from excessive exposure to UV rays. Typically, phenylbenzimidazole-5-sulfonic acid (PBSA) is used as a sun blocking agent, but its disadvantage is that it can photodegrade and cause cell damage. In our work, PBSA was encapsulated in niosomes nanoparticles then coated with chitosan-aloe vera (CS-nio-aloe/PBSA) to form a carrier polymer with novel and potent properties. This polymer controls PBSA release and epidermal penetration. Characterization of CS-nio-aloe/PBSA polymer nanoparticles through transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS). The carrier polymer release rate was studied in vitro and epidermal permeability to coated PBSA was assessed using mouse skin. The nanoparticle polymer containing sunscreen was effectively prepared with an encapsulation efficiency of 80%. The formulation (CS-nio-aloe/PBSA) was completely deposited on the surface of the skin. This supports its use to protect the skin, and its nanostructures stimulate the release of PBSA for a longer period. Encapsulation of PBSA in CS-nio-aloe nanoparticles could allow for further cellular preservation, UV protection, control of free PBSA, and limited penetration through the mouse skin epidermis.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).