S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit
{"title":"新型生物活性镁掺杂非桑蚕丝素纳米纤维在伤口愈合过程中加速皮肤屏障修复","authors":"S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit","doi":"10.1177/08839115211061737","DOIUrl":null,"url":null,"abstract":"Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"32 1","pages":"38 - 52"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing\",\"authors\":\"S. Gupta, P. Dutta, Veena Acharya, P. Prasad, A. Roy, Arindam Bit\",\"doi\":\"10.1177/08839115211061737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"32 1\",\"pages\":\"38 - 52\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115211061737\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115211061737","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing
Novel magnesium doped non-mulberry silk fibroin nanofibers with ability to enhance skin barrier function were successfully fabricated using electrospinning technique for wound healing applications. Magnesium nanoparticles incorporated in the electrospun nanofibers releases Mg2+ ions at the site of implementation. The effect of Mg2+ is of considerable concern in wound healing due to its skin barrier repair ability and its role in blood coagulation. The physicochemical characterization of the scaffold was investigated by determining the morphology and secondary structure confirmation. The effects of Mg2+ ions in silk fibroin microenvironment have been evaluated using SEM, XRD, and FTIR to confirm the incorporation of magnesium in the film. The aim of this study is to see the effect of doped Mg on the structural, physical, and biological properties of non-mulberry silk fibroin (NSF) film. The magnesium doped nanofibrous film exhibited enhanced mechanical property, satisfactory blood clotting ability, and good in vitro degradability. This silk fibroin-based film mimicking extracellular matrix for skin regeneration were constructed using electrospinning technique. The wound healing efficiency of prepared nanofibers were evaluated in full-thickness wound models of rat. The Mg doped silk fibroin film exhibited faster wound healing activity (14 days) among all experimental group. The study indicates the potential of magnesium-doped silk /PVA film as skin substitute film.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).