Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran
{"title":"挤压法制备脂质体纳米载体促进紫杉醇肿瘤蓄积","authors":"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran","doi":"10.1177/08839115211053926","DOIUrl":null,"url":null,"abstract":"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"20 1","pages":"3 - 16"},"PeriodicalIF":2.1000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel\",\"authors\":\"Ngoc Thuy Trang Le, N. H. Nguyen, Minh Chau Hoang, Cuu Khoa Nguyen, Dai Hai Nguyen, Dieu Linh Tran\",\"doi\":\"10.1177/08839115211053926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"20 1\",\"pages\":\"3 - 16\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115211053926\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115211053926","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel
Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).