Jing Zhang, Shen Shen, Shijie Zhu, Fan Jia, Jin Li, Yu Sun
{"title":"<i>Cnicus benedictus</i> extract-loaded electrospun gelatin wound dressing for treating diabetic wounds: An in vitro and in vivo study.","authors":"Jing Zhang, Shen Shen, Shijie Zhu, Fan Jia, Jin Li, Yu Sun","doi":"10.1177/22808000241245298","DOIUrl":"https://doi.org/10.1177/22808000241245298","url":null,"abstract":"<p><p>In the current study, <i>Cnicus benedictus extract</i> was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, <i>Cnicus benedictus extract-</i>loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in <i>Cnicus benedictus</i> extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241245298"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Comparison of adhesive bond strength among fiber reinforced post and core with different cementation techniques: In vitro study.","authors":"","doi":"10.1177/22808000241273951","DOIUrl":"https://doi.org/10.1177/22808000241273951","url":null,"abstract":"","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241273951"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Najoua Salhi, Otman El Guourrami, Abdelaali Balahbib, Lamiae Rouas, Siham Moussaid, Amina Moutawalli, Fatima Zahra Benkhouili, Mouna Ameggouz, Riaz Ullah, Amal Alotaibi, Abdelhakim Bouyahya, Ching Siang Tan, Long Chiau Ming, My El Abbes Faouzi, Yahya Cherrah
{"title":"Application of Aleppo pine extract for skin burn treatment.","authors":"Najoua Salhi, Otman El Guourrami, Abdelaali Balahbib, Lamiae Rouas, Siham Moussaid, Amina Moutawalli, Fatima Zahra Benkhouili, Mouna Ameggouz, Riaz Ullah, Amal Alotaibi, Abdelhakim Bouyahya, Ching Siang Tan, Long Chiau Ming, My El Abbes Faouzi, Yahya Cherrah","doi":"10.1177/22808000241236020","DOIUrl":"10.1177/22808000241236020","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the <i>Pinus halepensis</i> extracts and determine its healing and antibacterial effects, and to evaluate the treatment of skin burns.</p><p><strong>Methods: </strong>Aqueous and ethanolic extracts and topical based on Aleppo pine plant extracts were prepared. Thirty male and female Wistar rats were used to study the cutaneous toxicity of extracts from the bark of <i>P. halepensis</i>. The extracts' healing potential for burn wounds were also assessed by evaluating the clinical and macroscopic aspects of the wounds. The antibacterial activity of crude extracts of <i>P. halepensis</i> as well as its wound healing abilities was verified in this investigation.</p><p><strong>Results: </strong>In animals with acute dermal toxicity, there were no signs of treatment-related toxicity or death. The extracts of these plants could be transformed into phytomedicines for the treatment of infected wounds. The results demonstrated that formulated ointments are successful in treating second-degree burns in rats and may be suitable for the short-term therapeutic treatment of second-degree burns.</p><p><strong>Conclusion: </strong>This study successfully answered our problem, regarding the efficacy of our extract for treating second-degree burns in rats. Further studies are needed to confirm these results by identifying the molecules responsible for these activities and examining their mechanism of action.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241236020"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the purity of chitin from crustacean sources using deep eutectic solvents: A machine learning approach.","authors":"Sasireka Rajendran, Madheswaran Muthusamy","doi":"10.1177/22808000241248887","DOIUrl":"https://doi.org/10.1177/22808000241248887","url":null,"abstract":"<p><strong>Objective: </strong>Chitin a natural polymer is abundant in several sources such as shells of crustaceans, mollusks, insects, and fungi. Several possible attempts have been made to recover chitin because of its importance in biomedical applications in various forms such as hydrogel, nanoparticles, nanosheets, nanowires, etc. Among them, deep eutectic solvents have gained much consideration because of their eco-friendly and recyclable nature. However, several factors need to be addressed to obtain a pure form of chitin with a high yield. The development of an innovative system for the production of quality chitin is of prime importance and is still challenging.</p><p><strong>Methods: </strong>The present study intended to develop a novel and robust approach to investigate chitin purity from various crustacean shell wastes using deep eutectic solvents. This investigation will assist in envisaging the important influencing parameters to obtain a pure form of chitin via a machine learning approach. Different machine learning algorithms have been proposed to model chitin purity by considering the enormous experimental dataset retrieved from previously conducted experiments. Several input variables have been selected to assess chitin purity as the output variable.</p><p><strong>Results: </strong>The statistical criteria of the proposed model have been critically investigated and it was observed that the results indicate XGBoost has the maximum predictive accuracy of 0.95 compared with other selected models. The RMSE and MAE values were also minimal in the XGBoost model. In addition, it revealed better input variables to obtain pure chitin with minimal processing time.</p><p><strong>Conclusion: </strong>This study validates that machine learning paves the way for complex problems with substantial datasets and can be an inexpensive and time-saving model for analyzing chitin purity from crustacean shells.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241248887"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering VEGF-like peptide QKCMP promotes rapid endothelialization of blood vessels.","authors":"Haifeng Wang, Yi Huang, Chenhui Zhou, Fanyong Gong, Jiangyong Wang, Gao Chen","doi":"10.1177/22808000241301180","DOIUrl":"https://doi.org/10.1177/22808000241301180","url":null,"abstract":"<p><p>Angiogenesis, which involves many essential processes, such as human reproduction, organ development, and wound healing, is regulated by multiple signaling pathways. QKCMP is a polypeptide with similar effects to vascular endothelial growth factor (VEGF), which promotes angiogenesis. In this study, zebrafish were treated with different concentrations of QKCMP, and it was found that QKCMP significantly promoted the growth of blood vessels. Human umbilical vein endothelial cells (HUVECs) was then treated with different concentrations of QKCMP, which proved that QKCMP could promote cell proliferation and inhibit cell apoptosis, and thus obtain a complete gene expression matrix. Genes and biological functions or pathways significantly associated with QKCMP were obtained using differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and enrichment analyses. Among them, genes significantly related to QKCMP are enriched in biological processes (BP) such as vascular formation and development, as well as the main signaling pathway: PI3K/AKT signaling pathway. The proproliferative and antiapoptotic effects of QKCMP on the HUVECs and the induction of cell cycle were then verified using cell counting kit 8 (CCK-8) and flow cytometry. Finally, it was confirmed that QKCMP promotes angiogenesis and rapid endothelialization by stimulating the PI3K-AKT and Hippo signaling pathways using quantitative real-time PCR (qRT-PCR) and western blot (WB).</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241301180"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emre Fatih Ediz, Cansu Güneş, Meltem Demirel Kars, Ahmet Avcı
{"title":"In vitro assessment of <i>Momordica charantia</i>/<i>Hypericum perforatum</i> oils loaded PCL/Collagen fibers: Novel scaffold for tissue engineering.","authors":"Emre Fatih Ediz, Cansu Güneş, Meltem Demirel Kars, Ahmet Avcı","doi":"10.1177/22808000231221067","DOIUrl":"https://doi.org/10.1177/22808000231221067","url":null,"abstract":"<p><p>The research on tissue engineering applications has been progressing to manufacture ideal tissue scaffold biomaterials. In this study, a double-layered electrospun biofiber scaffold biomaterial including Polycaprolactone (PCL)/Collagen (COL) fibrous inner layer and PCL/ <i>Momordica charantia</i> (MC) and <i>Hypericum perforatum (HP)</i> oils fibrous outer layer was developed to manufacture a functional, novel tissue scaffold with the advantageous mechanical and biological properties. The main approach was to combine the natural perspective using medicinal oils with an engineering point of view to fabricate a potential functional scaffold for tissue engineering. Medicinal plants MC and HP are rich in functional oils and incorporation of them in a tissue scaffold will unveil their potential to augment both new tissue formation and wound healing. In this study, a novel double-layered scaffold prototype was fabricated using electrospinning technique with two PCL fiber layers, first is composed of collagen, and second is composed of oils extracted from medicinal plants. Initially, the composition of plant oils was analyzed. Thereafter the biofiber scaffold layers were fabricated and were evaluated in terms of morphology, physicochemistry, thermal and mechanical features, wettability, in vitro bio-degradability. Double-layered scaffold prototype was further analyzed in terms of in vitro biocompatibility and antibacterial effect. The medicinal oils blend provided antioxidant and antibacterial properties to the novel PCL/Oils layer. The results signify that inner PCL/COL layer exhibited advanced biodegradability of 8.5% compared to PCL and enhanced wettability with 11.7° contact angle. Strength of scaffold prototype was 5.98 N/mm<sup>2</sup> thanks to the elastic PCL fibrous matrix. The double-layered functional biofiber scaffold enabled 92% viability after 72 h contact with fibroblast cells and furthermore provided feasible attachment sites for the cells. The functional scaffold prototype's noteworthy mechanical, chemical, and biological features enable it to be suggested as a different novel biomaterial with the potential to be utilized in tissue engineering applications.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000231221067"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Bellusa, Lianrui Chu, Evelyn Fung, Kyumin Whang
{"title":"Antimicrobial hard denture reliners using quaternary ammonium methacryloxy silicate (K18 QAMS) and K18-functionalized filler.","authors":"Sara Bellusa, Lianrui Chu, Evelyn Fung, Kyumin Whang","doi":"10.1177/22808000241284431","DOIUrl":"https://doi.org/10.1177/22808000241284431","url":null,"abstract":"<p><strong>Objective: </strong>To determine the effects of adding a quaternary ammonium methacryloxy silicate (K18) and K18-functionalized filler (K18-Filler) on the material and antimicrobial properties of a hard denture reline material.</p><p><strong>Materials and methods: </strong>30% K18 in methyl methacrylate (K18-MMA; 0-20 wt% of reliner) and K18-Filler (0-30 wt% of reliner) were incorporated into Kooliner<sup>TM</sup> hard denture reliner. Kooliner<sup>TM</sup> served as the control. The cure (Shore A hardness), hydrophilicity (contact angles), mechanical (3-point bend test), water sorption, and antimicrobial properties against <i>Streptococcus mutans</i>, <i>S. sanguinis</i>, and <i>Candida albicans</i> were determined.</p><p><strong>Results: </strong>Most K18 groups cured well and had comparable Shore A hardness values (range ~52 to 70 DHN) to that of controls (67.2 ± 1.8 DHN; Bonferroni corrected <i>p</i> > 0.0003). Even the softest group had hardness values within the range of commercial products. Half of the K18 groups had comparable contact angles to that of controls (range ~75° to 80° vs 83.41° ± 2.66°; Bonferroni corrected <i>p</i> > 0.0003), and most were within the range of commercial liners. K18-MMA and K18-Filler increased modulus but decreased ultimate transverse strength (UTS). All experimental groups had comparable or higher moduli than controls (range ~966 to 2069 MPa vs 1340 ± 119 MPa; Bonferroni corrected <i>p</i> < 0.0003), but only half of the experimental groups had comparable UTS to that of controls (range ~41 to 49 MPa vs 55.8 ± 1.5 MPa; Bonferroni corrected <i>p</i> > 0.0003). The 15% and 20% K18-MMA with 30% K18-Filler groups had significant antimicrobial activity against all three microbes (<i>p</i> < 0.05). However, the 15% and 20% K18-MMA with 30% K18-Filler groups had significantly higher water sorption at early time points (<i>p</i> < 0.05). After 8 weeks, they were comparable to each other (<i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>K18-MMA and K18-Filler are promising antimicrobial additives that produce hard denture liners with material properties within the range of commercial products and significant antimicrobial properties against <i>S. mutans</i>, <i>S. sanguinis</i>, and <i>C. albicans</i>. Further development is needed to reduce water sorption.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241284431"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurul Aida Ngah, Jithendra Ratnayake, George J Dias, Darryl C Tong, Siti Noor Fazliah Mohd Noor, Paul R Cooper, Haizal Mohd Hussaini
{"title":"Physicochemical and biocompatibility characterisation of a 3D lyophilised platelet-rich fibrin scaffold for cleft lip and palate repair.","authors":"Nurul Aida Ngah, Jithendra Ratnayake, George J Dias, Darryl C Tong, Siti Noor Fazliah Mohd Noor, Paul R Cooper, Haizal Mohd Hussaini","doi":"10.1177/22808000241289208","DOIUrl":"https://doi.org/10.1177/22808000241289208","url":null,"abstract":"<p><p>Craniofacial bone defects result from various disorders such as trauma, congenital malformations and infections. Cleft lip and palate are the most prevalent congenital craniofacial birth defect in humans. Growth factors (GFs) are soluble proteins secreted by cells that regulate various cellular processes and tissue regeneration. At present, developing three-dimensional scaffolds for delivering GFs to the site of injury has become an important aspect in craniofacial bone regeneration. This study aims to develop a novel 3D bone substitute using lyophilized-platelet-rich fibrin (LyPRF) biocomposite scaffolds for potential application for CLP repair. Collagen (C), bioglass (BG), and LyPRF were used to fabricate a biocomposite (C-BG-LyPRF) scaffold. The physical, chemical, and biocompatibility properties of the scaffold were evaluated. The C-BG-LyPRF scaffold demonstrated a mean pore diameter of 146 µm within a porosity of 87.26%. The FTIR spectra verified the presence of am-ide I, II, and III functional groups. The inorganic phase of the C-BG-LyPRF scaffold was composed of sodium, calcium, silicon, and phosphorus, as determined by EDX analysis. Furthermore, C-BG-LyPRF scaffold was biocompatible with MC3T3-E1 cells in both the Live/Dead and prolif-eration assays. Data demonstrate the developed C-BG-LyPRF scaffold exhibits biomimetic and biocompatibility properties, establishing it as a promising biomaterial for craniofacial regeneration.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241289208"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fracture resistance evaluation of CAD/CAM zirconia and composite primary molar crowns with different occlusal thicknesses.","authors":"Arif Bolaca, Yıldırım Erdoğan","doi":"10.1177/22808000241235994","DOIUrl":"10.1177/22808000241235994","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the effect of different CAD/CAM materials and occlusal thicknesses on the fracture resistance of primary molar crowns.</p><p><strong>Methods: </strong>Sixty extracted primary molar teeth were prepared and randomly divided into six experimental groups according to the material and thickness. Primary molar crowns with a central groove thickness of 0.3 and 0.5 mm were fabricated from CAD/CAM zirconia (group Z), zirconia-reinforced lithium silicate (group ZLS), and pre-polymerized composite resin blocks (group C). Each crown was cemented with self-adhesive resin cement on the prepared tooth. All specimens were subjected to fracture tests until fracture. Fracture load values were recorded in Newtons (N). Data were statistically analyzed using a two-way analysis of variance (ANOVA) followed by Tukey multiple comparison test.</p><p><strong>Results: </strong>The highest fracture load values were obtained in group Z at 0.5 mm occlusal thickness and were significantly higher compared with the other experimental groups (<i>p</i> < 0.05). Although the lowest fracture load values were obtained in group ZLS at 0.3 mm occlusal thickness, all the tested CAD/CAM primary molar crowns at both thicknesses demonstrated fracture load values exceeding reported chewing force in pediatric patients.</p><p><strong>Conclusion: </strong>CAD/CAM primary molar crowns with reduced occlusal thickness may be used for the full-coverage restoration of primary molar teeth.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241235994"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of microstructure evolution and mechanical properties of Al-10Zn-1.63Si/<i>Irvingia gabonensis</i> particulates alloy composites.","authors":"Chukwuneke Jeremiah Lekwuwa, Sinebe Jude Ebieladoh, Umahi Justice Chidi, Nnakwo Kingsley Chidi, Olisakwe Henry Chukwuemeka","doi":"10.1177/22808000241236021","DOIUrl":"10.1177/22808000241236021","url":null,"abstract":"<p><p>This study demonstrates the feasibility of using <i>Irvingia gabonensis</i> shell particulates (IGSp) as alternative reinforcing materials in the development of aluminium-based composites. In this experimental study, the microstructure, phase composition, and mechanical behaviour of Al-10Zn-1.63Si/xIGSp (wt%, x = 1, 3, 5 and 7) composites were investigated. The Al-10Zn-1.63Si based composites were fabricated using the stir-casting technique. Different weight percentages (1, 3, 5 and 7) of IGSp were added to the Al-10Zn-1.63Si matrix. The chemical constituents of the IGSp were determined using X-ray fluorescence (XRF). The grain characteristics and phase(s) compositions were determined using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). The ultimate tensile strength, hardness, and impact strength of the developed composites were also determined. The SEM and XRD results revealed the presence of different phases: aluminium phosphate (Al<sub>16</sub>P<sub>16</sub>O<sub>64</sub>), gahnite (ZnAl<sub>2</sub>O<sub>4</sub>), andalusite (Al<sub>2</sub>SiO<sub>5</sub>), Quartz (SiO<sub>2</sub>) and aluminium silicate (Al<sub>2</sub>O<sub>3.5</sub>.SiO<sub>2</sub>). Results show that addition of IGSp led to an increase in ultimate tensile strength, with the highest value (128 MPa) obtained at 3 wt% IGSp. The hardness of the composites increased with increasing concentrations of IGSp, reaching a maximum value of 285 HV after adding 7 wt% IGSp. The impact strength improved with the addition of IGSp, with the highest value (30 J) obtained at 1 wt% IGSp. The improvements in mechanical properties were attributed to the dispersion of three major phases: aluminium silicate (Al<sub>2</sub>O<sub>3.54.</sub>SiO<sub>2</sub>), Al<sub>16</sub>P<sub>16</sub>O<sub>64</sub> and Al<sub>2</sub>O<sub>3.54.</sub>SiO<sub>2</sub>. These phases contributed to the enhanced strength and hardness of the composites. The study noted a sudden decrease in ultimate tensile strength with higher concentrations of IGSp due to the increase in the intensities of Al<sub>16</sub>P<sub>16</sub>O<sub>64</sub> and precipitation of hard but brittle new phase; Al<sub>2</sub>Si<sub>60.</sub>6O126.33. The study concludes that IGSp has the potential to serve as an alternative reinforcing material for aluminium-based composites.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241236021"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}