Journal of Applied Biomaterials & Functional Materials最新文献

筛选
英文 中文
Antimicrobial hard denture reliners using quaternary ammonium methacryloxy silicate (K18 QAMS) and K18-functionalized filler. 使用季铵盐甲基丙烯酰氧基硅酸盐(K18 QAMS)和 K18 功能化填料的抗菌硬义齿衬垫。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241284431
Sara Bellusa, Lianrui Chu, Evelyn Fung, Kyumin Whang
{"title":"Antimicrobial hard denture reliners using quaternary ammonium methacryloxy silicate (K18 QAMS) and K18-functionalized filler.","authors":"Sara Bellusa, Lianrui Chu, Evelyn Fung, Kyumin Whang","doi":"10.1177/22808000241284431","DOIUrl":"https://doi.org/10.1177/22808000241284431","url":null,"abstract":"<p><strong>Objective: </strong>To determine the effects of adding a quaternary ammonium methacryloxy silicate (K18) and K18-functionalized filler (K18-Filler) on the material and antimicrobial properties of a hard denture reline material.</p><p><strong>Materials and methods: </strong>30% K18 in methyl methacrylate (K18-MMA; 0-20 wt% of reliner) and K18-Filler (0-30 wt% of reliner) were incorporated into Kooliner<sup>TM</sup> hard denture reliner. Kooliner<sup>TM</sup> served as the control. The cure (Shore A hardness), hydrophilicity (contact angles), mechanical (3-point bend test), water sorption, and antimicrobial properties against <i>Streptococcus mutans</i>, <i>S. sanguinis</i>, and <i>Candida albicans</i> were determined.</p><p><strong>Results: </strong>Most K18 groups cured well and had comparable Shore A hardness values (range ~52 to 70 DHN) to that of controls (67.2 ± 1.8 DHN; Bonferroni corrected <i>p</i> > 0.0003). Even the softest group had hardness values within the range of commercial products. Half of the K18 groups had comparable contact angles to that of controls (range ~75° to 80° vs 83.41° ± 2.66°; Bonferroni corrected <i>p</i> > 0.0003), and most were within the range of commercial liners. K18-MMA and K18-Filler increased modulus but decreased ultimate transverse strength (UTS). All experimental groups had comparable or higher moduli than controls (range ~966 to 2069 MPa vs 1340 ± 119 MPa; Bonferroni corrected <i>p</i> < 0.0003), but only half of the experimental groups had comparable UTS to that of controls (range ~41 to 49 MPa vs 55.8 ± 1.5 MPa; Bonferroni corrected <i>p</i> > 0.0003). The 15% and 20% K18-MMA with 30% K18-Filler groups had significant antimicrobial activity against all three microbes (<i>p</i> < 0.05). However, the 15% and 20% K18-MMA with 30% K18-Filler groups had significantly higher water sorption at early time points (<i>p</i> < 0.05). After 8 weeks, they were comparable to each other (<i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>K18-MMA and K18-Filler are promising antimicrobial additives that produce hard denture liners with material properties within the range of commercial products and significant antimicrobial properties against <i>S. mutans</i>, <i>S. sanguinis</i>, and <i>C. albicans</i>. Further development is needed to reduce water sorption.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical and biocompatibility characterisation of a 3D lyophilised platelet-rich fibrin scaffold for cleft lip and palate repair. 用于唇腭裂修复的三维冻干富血小板纤维蛋白支架的物理化学和生物相容性表征。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241289208
Nurul Aida Ngah, Jithendra Ratnayake, George J Dias, Darryl C Tong, Siti Noor Fazliah Mohd Noor, Paul R Cooper, Haizal Mohd Hussaini
{"title":"Physicochemical and biocompatibility characterisation of a 3D lyophilised platelet-rich fibrin scaffold for cleft lip and palate repair.","authors":"Nurul Aida Ngah, Jithendra Ratnayake, George J Dias, Darryl C Tong, Siti Noor Fazliah Mohd Noor, Paul R Cooper, Haizal Mohd Hussaini","doi":"10.1177/22808000241289208","DOIUrl":"https://doi.org/10.1177/22808000241289208","url":null,"abstract":"<p><p>Craniofacial bone defects result from various disorders such as trauma, congenital malformations and infections. Cleft lip and palate are the most prevalent congenital craniofacial birth defect in humans. Growth factors (GFs) are soluble proteins secreted by cells that regulate various cellular processes and tissue regeneration. At present, developing three-dimensional scaffolds for delivering GFs to the site of injury has become an important aspect in craniofacial bone regeneration. This study aims to develop a novel 3D bone substitute using lyophilized-platelet-rich fibrin (LyPRF) biocomposite scaffolds for potential application for CLP repair. Collagen (C), bioglass (BG), and LyPRF were used to fabricate a biocomposite (C-BG-LyPRF) scaffold. The physical, chemical, and biocompatibility properties of the scaffold were evaluated. The C-BG-LyPRF scaffold demonstrated a mean pore diameter of 146 µm within a porosity of 87.26%. The FTIR spectra verified the presence of am-ide I, II, and III functional groups. The inorganic phase of the C-BG-LyPRF scaffold was composed of sodium, calcium, silicon, and phosphorus, as determined by EDX analysis. Furthermore, C-BG-LyPRF scaffold was biocompatible with MC3T3-E1 cells in both the Live/Dead and prolif-eration assays. Data demonstrate the developed C-BG-LyPRF scaffold exhibits biomimetic and biocompatibility properties, establishing it as a promising biomaterial for craniofacial regeneration.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of coating time on the formation of coating layer and degradation behavior of hydroxyapatite coated ZK60 alloy. 涂层时间对羟基磷灰石涂层 ZK60 合金的涂层形成和降解行为的影响。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241251564
Le Van Hai, Do Nhu Ngoc, Pham Mai Khanh, Le Van Tuan, Vu Nhat Dinh, Nguyen Viet Nam
{"title":"Effect of coating time on the formation of coating layer and degradation behavior of hydroxyapatite coated ZK60 alloy.","authors":"Le Van Hai, Do Nhu Ngoc, Pham Mai Khanh, Le Van Tuan, Vu Nhat Dinh, Nguyen Viet Nam","doi":"10.1177/22808000241251564","DOIUrl":"https://doi.org/10.1177/22808000241251564","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to investigate the effect of coating time on the formation of hydroxyapatite (HA) coating layer on ZK60 substrate and understand the biodegradation behavior of the coated alloy for biodegradable implant applications.</p><p><strong>Methods: </strong>Biodegradable ZK60 alloy was coated by HA layer for different times of 0.5, 1, 2, and 4 h by chemical conversion method. After coating, all the coated specimens were used for immersion test in Hanks' solution to understand the effect of coating time on the degradation behavior of the alloy. The degradation rate of the coated alloy was evaluated by Mg<sup>2+</sup> ion quantification and pH change during immersion test. The microstructure of the coating layer was examined by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) before and after immersion to understand the degradation behavior of the coated alloy.</p><p><strong>Results: </strong>HA coating layers were formed successfully on surface of ZK60 specimens after 0.5, 1, 2, and 4 h with different microstructure. Optimal coating quality was observed at 1 or 2 h, characterized by well-formed and uniform HA layers. However, extending the coating duration to 4 h led to the formation of cracks within the HA layer, accompanied by Mg(OH)<sub>2</sub>. Specimens coated for 1 and 2 h exhibited the lowest degradation rates, while specimens coated for 0.5 and 4 h showed the highest degradation rates. Furthermore, analysis of degradation products revealed the predominance of calcium phosphates formed on the surface of specimens coated for 1 and 2 h. Conversely, specimens coated for 0.5 and 4 h exhibited Mg(OH)<sub>2</sub> as the primary degradation product, suggesting a less effective corrosion barrier under these conditions.</p><p><strong>Conclusion: </strong>The HA layer formed after 2 h demonstrated as the most effective coating layer for enhancing the corrosion resistance of the ZK60 alloy for biomedical applications.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of atomization on the composition and structure of recombinant humanized collagen type III. 雾化对重组人源化 III 型胶原蛋白组成和结构的影响。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241261904
Ningwen Cheng, Xinyue Zhang, Jian Wang, Danfeng Li, Ling Li, Huan Hu, Tingli Qu
{"title":"Effect of atomization on the composition and structure of recombinant humanized collagen type III.","authors":"Ningwen Cheng, Xinyue Zhang, Jian Wang, Danfeng Li, Ling Li, Huan Hu, Tingli Qu","doi":"10.1177/22808000241261904","DOIUrl":"10.1177/22808000241261904","url":null,"abstract":"<p><p>Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways. Currently, a great number of therapeutic proteins such as alpha-1 antitrypsin and Dornase alfa are effective. Recombinant humanized collagen type III (rhCol III) as a therapeutic protein is widely used in the biomedical field, but atomization is not a common route of administration for rhCol III, presenting great potential for development. However, the structural stability of recombinant humanized collagen after atomization needs further investigation. This study demonstrated that the rhCol III subjected to atomization through compressed air had retained its original molecular weights, triple helical structures, and the ability to promote cell adhesion. In other words, the rhCol III can maintain its stability after undergoing atomization. Although more research is required to determine the efficacy and safety of the rhCol III after atomization, this study can lay the groundwork for future research.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer. 通过阳极氧化中间层提高 AZ31 合金上羟基磷灰石涂层的耐腐蚀性和附着力。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241271693
Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong
{"title":"Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer.","authors":"Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong","doi":"10.1177/22808000241271693","DOIUrl":"https://doi.org/10.1177/22808000241271693","url":null,"abstract":"<p><strong>Objectives: </strong>The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.</p><p><strong>Methods: </strong>An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg<sup>2+</sup> ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg<sup>2+</sup> ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.</p><p><strong>Results: </strong>An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.</p><p><strong>Conclusion: </strong>HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. 中药纳米药物的联合药物疗法可防止多药耐药蛋白 1:促进肺癌细胞凋亡。
IF 2.5 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241235442
Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar
{"title":"Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma.","authors":"Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar","doi":"10.1177/22808000241235442","DOIUrl":"10.1177/22808000241235442","url":null,"abstract":"<p><p>Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells. 蜘蛛丝增强软骨组织工程:使用脂肪基质细胞的新型生物反应器模型的方法。
IF 2.5 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241226656
Sarah Strauß, Maximilian Diemer, Vesna Bucan, Jörn W Kuhbier, Tomke Asendorf, Peter M Vogt, Frederik Schlottmann
{"title":"Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells.","authors":"Sarah Strauß, Maximilian Diemer, Vesna Bucan, Jörn W Kuhbier, Tomke Asendorf, Peter M Vogt, Frederik Schlottmann","doi":"10.1177/22808000241226656","DOIUrl":"10.1177/22808000241226656","url":null,"abstract":"<p><p>Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroless silver plating on fabrics for antimicrobial coating: comparison between cotton and polyester. 织物上的非电解镀银抗菌涂层:棉与涤纶的比较。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241277383
Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi
{"title":"Electroless silver plating on fabrics for antimicrobial coating: comparison between cotton and polyester.","authors":"Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi","doi":"10.1177/22808000241277383","DOIUrl":"10.1177/22808000241277383","url":null,"abstract":"<p><p>In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against <i>Escherichia coli</i> in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of polyimide MP-1™ wear particles on a rodent closed fracture healing model. 聚酰亚胺 MP-1™ 磨损颗粒对啮齿动物闭合性骨折愈合模型的影响。
IF 2.5 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241240296
Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh
{"title":"The influence of polyimide MP-1™ wear particles on a rodent closed fracture healing model.","authors":"Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh","doi":"10.1177/22808000241240296","DOIUrl":"10.1177/22808000241240296","url":null,"abstract":"<p><p>Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (<i>n</i> = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation. 仿生 HA-GO 植入物涂层通过巨噬细胞 M2 极化诱导的骨免疫调节增强骨结合。
IF 3.1 4区 医学
Journal of Applied Biomaterials & Functional Materials Pub Date : 2024-01-01 DOI: 10.1177/22808000241266665
Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He
{"title":"Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.","authors":"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He","doi":"10.1177/22808000241266665","DOIUrl":"https://doi.org/10.1177/22808000241266665","url":null,"abstract":"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信