{"title":"Comparative study of polymeric nanoparticles and traditional agents in dental implant decontamination.","authors":"Håvard J Haugen, Jaime Bueno, Badra Hussain, Raquel Osorio, Mariano Sanz","doi":"10.1177/22808000251313948","DOIUrl":"10.1177/22808000251313948","url":null,"abstract":"<p><p>Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination. Titanium discs were treated with saline water, PrefGel<sup>®</sup>, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), GUM<sup>®</sup> Paroex<sup>®</sup>, or polymeric NPs, and analysed using SEM, EDX, XPS, and contact angle measurements to assess changes in surface composition, morphology, and hydrophilicity. Polymeric NPs significantly reduced nitrogen levels compared to PrefGel® (mean reduction: 2.6%, <i>p</i> < 0.05), indicating effective protein removal. However, their carbon reduction efficacy was similar to that of other agents. SEM images revealed that polymeric NPs disaggregated larger protein aggregates but did not fully decontaminate the surface. Contact angle analysis showed changes in hydrophilicity consistent with other treatments. Hydrogen peroxide performed best overall, achieving the lowest carbon levels post-recontamination (mean reduction: 13%, <i>p</i> < 0.01). While polymeric NPs exhibited unique protein-specific cleaning potential, their overall performance was comparable to traditional agents. Residual contaminants, including carbon and oxygen, persisted on all treated surfaces, indicating enhanced cleaning strategies were needed. These findings highlight the potential of polymeric NPs as an innovative approach to implant decontamination, particularly for protein-specific biofilm control. However, their efficacy in broader applications remains like that of conventional methods. This research contributes to developing targeted decontamination protocols to manage peri-implant diseases and improve long-term implant outcomes.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251313948"},"PeriodicalIF":3.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tuba Ayub, Gulzar Muhammad, Muhammad Umair Sharif, Muhammad Rauf Raza, Hina Hanif, Muhammad Amin, Muhammad Ajaz Hussain
{"title":"Glucuronoxylan hemicellulose-based manganese oxide nanoparticles for enhanced bactericidal, wound healing, and photocatalytic potential.","authors":"Tuba Ayub, Gulzar Muhammad, Muhammad Umair Sharif, Muhammad Rauf Raza, Hina Hanif, Muhammad Amin, Muhammad Ajaz Hussain","doi":"10.1177/22808000251328937","DOIUrl":"https://doi.org/10.1177/22808000251328937","url":null,"abstract":"<p><p>Hemicelluloses are promising candidates for synthesizing nanosystems for potential biomedical and photocatalytic applications. Glucuronoxylan (hemicellulose)-capped manganese oxide nanoparticles (GX-MnO NPs) were synthesized from quince (<i>Cydonia oblonga</i> M.) seed hydrogel. Ultraviolet-visible spectroscopic analysis revealed a distinct surface plasmon resonance peak at 310 nm for MnO NPs, with an estimated band gap energy of 2.60 eV. The interactions between MnO NPs and the functional groups of hydrogel were characterized using Fourier-transform infrared spectroscopy, while the cubic structure was evident from X-ray diffraction results at 2θ location. Scanning electron microscopy showed that the NPs had a roughly spherical shape with an average size of 38.5 nm. Energy-dispersive X-ray spectrum indicated the sample's composition, highlighting a significant presence of manganese (39.29%), oxygen (29.3%), and minor elements from hydrogel. The NPs displayed noteworthy in vitro antibacterial and antibiofilm activities against <i>Bacillus licheniformis</i>, <i>Escherichia coli</i>, and <i>Aeromonas</i>. An in vivo wound healing experiment illustrated that wounds treated with GX-MnO NPs healed entirely within 10 days in albino mice. Further, GX-MnO NPs served as an excellent photocatalytic system in the sunlight-assisted degradation of methylene blue (90.5%) and methyl orange (89.7%). Intriguingly, degradation efficiencies of 47.6% and 45.7% were achieved, respectively, when the NPs were operated in the dark. Thus, the study suggests GX-MnO NPs as versatile and promising agents to address biomedical and dye-contaminated wastewater concerns.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251328937"},"PeriodicalIF":3.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bone formation and bioresorption of silver-doped β-tricalcium phosphate in rabbit bone defects.","authors":"Shoshi Akiyama, Takaaki Tanaka, Hirokazu Komaki, Naoya Inagaki, Mitsuru Saito","doi":"10.1177/22808000251335407","DOIUrl":"https://doi.org/10.1177/22808000251335407","url":null,"abstract":"<p><p>Implant-associated infections pose a significant challenge in orthopedic surgery but may be prevented using biomaterials containing antimicrobial agents such as Ag ions. This study examines the effects of Ag doping on bone metabolism following the implantation of β-tricalcium phosphate (β-TCP) doped with 0, 1, 3, and 5 at% Ag with 75% porosity. Additionally, the antimicrobial activity of Ag-doped β-TCP was evaluated against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> using shake flask tests, revealing increased antimicrobial activity with higher Ag concentrations. Cylindrical bone defects (diameter 4 mm; depth 10 mm) were introduced in the lateral femoral condyles of rabbits and treated with Ag-doped β-TCP. The rabbits were euthanized at 2-, 4-, 8-, and 12-weeks post-operation (<i>n</i> = 6/time point). Specimens were decalcified for histological examination using optical and scanning electron microscopy (SEM). Bone formation, residual material, and tartrate-resistant acid phosphatase (TRAP)-positive cell counts were quantified, with statistical significance assessed using one-way ANOVA (<i>p</i> < 0.05). Bone formation increased over time up to 12 weeks but was lower with higher Ag concentrations. Residual material decreased, while TRAP-positive cells peaked at 2 weeks and gradually declined thereafter. SEM revealed Ag accumulation in the bone marrow outside the newly formed bone. Ag doping inhibited material resorption more than osteogenesis. Bone metabolism in the defect area was delayed as Ag concentration increased, likely due to reduced osteoclast activity. This study highlights the dual effect of Ag-doped β-TCP on bone metabolism and implant-associated infections. While Ag incorporation enhanced antimicrobial potential, higher concentrations delayed bone metabolism. Optimizing Ag content is crucial to balancing infection control with effective bone regeneration, guiding the development of advanced orthopedic implants.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251335407"},"PeriodicalIF":3.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144010461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A clinical comparison of the caries inhibitory potential of aluminum gallium arsenide LASER in conjunction with a remineralization paste in non-cavitated carious lesions.","authors":"Col Sonali Sharma, Mithra N Hegde","doi":"10.1177/22808000251322863","DOIUrl":"10.1177/22808000251322863","url":null,"abstract":"<p><strong>Background: </strong>Dental caries is a progressive disease with varying phases of demineralization and remineralization. If diagnosed before surface cavitation, the scope of reversing the carious lesion is increased.</p><p><strong>Aim: </strong>To evaluate caries preventive and caries inhibitory potential of Aluminum Gallium Arsenide (Al Ga As ) Laser irradiation in incipient noncavitated pit and fissure caries.</p><p><strong>Methodology: </strong>One hundred four patients between the age of 18-25 years exhibiting site 1 size 0, bilateral noncavitated carious lesions on mandibular molars were selected. The contralateral tooth type served as control. The quantitative baseline assessment of carious lesions of both the groups was by a Laser fluorescence method (DIAGNOdent). Group A (Test) cases were irradiated with Al Ga As laser of 3.5 W for 30 s followed by application of CPP-ACP F remineralizing paste. On the contralateral tooth type only remineralizing paste was applied and these cases were included In Group B (Control). The follow up was done by laser fluorescence (LF) and IOPA radiographs every 3 months for 12 months. Decrease or fall in laser fluorescence values from baseline values indicated remineralization.</p><p><strong>Result: </strong>Categorical variables were presented in number and percentage (%) and continuous variables were presented as mean ± SD. Normality of data was tested by Kolmogorov-Smirnov test. Qualitative variables were compared using Chi-Square test /Fisher's exact test. Student's unpaired \"<i>t</i>\" test was applied to test the difference between mean values of two groups. Student's paired \"<i>t</i>\" test was applied to test the relative change between different time points. One-way ANOVA was applied to compare mean values between more than two groups followed by post hoc test \"Tukeys HSD\" for multiple comparisons. As per Lussi criteria, it was observed in Control group : 53 patients scored 4 and required operative intervention, 38 patients scored 3 which would necessitate repeating the remineralizing protocol, whereas Test group: 3 patients scored 4 and 5 patients scoring 3. Comparing the LF values, it was observed progression of caries denoted by increase in LF values in control was statistically significant with <i>p</i> value < 0.001 and SD of 7.04. Test group exhibited a fall in LF denoting caries reversal which was statistically significant with <i>p</i> value < 0.001 and SD of 5.80. The failure rate of Control was 51.5% and Test was 3%.</p><p><strong>Conclusion: </strong>Based on the clinical results it was concluded that Al Ga As lasers can clinically bring about caries inhibition and can be a valuable tool in caries prevention.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251322863"},"PeriodicalIF":3.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative evaluation of esthetic and physical properties of CAD/CAM PEEK oral space maintainers.","authors":"Zhao Hao Zhen, Hua Cui Xiong, Ke Chen","doi":"10.1177/22808000251345581","DOIUrl":"https://doi.org/10.1177/22808000251345581","url":null,"abstract":"<p><p>Premature loss of deciduous teeth often causes malocclusion and misalignment, requiring orthodontic treatment. Oral space maintainers (OSMs) help preserve space after primary teeth loss but are commonly metal, with limitations like esthetics, metal allergies, and complex production. This study aims to find an alternative by evaluating the esthetic and physical properties of CAD/CAM-produced PEEK OSMs compared to conventional OSMs. Forty digital oral space maintainer specimens were fabricated from Polyetheretherketone (PEEK), PEEK composites, LuxaCrown, and cobalt-chromium alloy, with 10 specimens in each group. Esthetic evaluation was conducted using a standard shade guide, and marginal fit was assessed with a stereo-microscope. Shear bond strength was tested on resins for primary and permanent molars. Statistical analysis was performed using SPSS software. LuxaCrown matched natural tooth color best, followed by PEEK composites and PEEK, with cobalt-chromium showing the least similarity. LuxaCrown had the highest esthetic values, while PEEK and its composites showed acceptable marginal fits. Cobalt-chromium exhibited the highest shear bond strength. While PEEK has lower shear bond strength than cobalt-chromium, it shows promise as an esthetic alternative for pediatric space maintainers with acceptable fit. Further studies are needed to assess its long-term performance.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251345581"},"PeriodicalIF":3.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144316993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
El-Refaie Kenawy, Elbadawy A Kamoun, Samia M Elsigeny, Samira Heikal, Ashraf A El-Shehawy, Yehia A-G Mahmoud
{"title":"Vanillin loaded-physically crosslinked PVA/chitosan/itaconic membranes for topical wound healing applications","authors":"El-Refaie Kenawy, Elbadawy A Kamoun, Samia M Elsigeny, Samira Heikal, Ashraf A El-Shehawy, Yehia A-G Mahmoud","doi":"10.1177/22808000241281273","DOIUrl":"https://doi.org/10.1177/22808000241281273","url":null,"abstract":"Vanillin loaded-physically crosslinked hydrogel membranes made of PVA/chitosan/itaconic acid (PVA-CS-IA) were prepared using freezing-thawing (F-T) cycle method. To ensure the entanglement of PVA-CS-IA chains, three F-T cycles were repeated. The polymeric chains entanglements were confirmed and characterized by different instrumental characterizations. Physicochemical properties for example, swelling ratio, mechanical characteristics, gel fraction percentage (GF%), hydrolytic degradation, and thermal stability of PVA-CS-IA membrane were discussed in detail. The findings showed that the swelling ratio, mechanical characteristics, and hydrolytic degradation of the crosslinked membranes enhanced with increasing CS-IA contents in membranes composition; however, GF% gradually declined with CS-IA content. Additionally, cell viability test using HFB-4 cell line and antimicrobial activity against Staphylococcus aureus and Escherichia coli were evaluated using MTT assay and the bacterium growth inhibition percentage method; respectively. Notably, with varying incubation durations and membrane concentrations, all examined constructed hydrogels showed significant cell survival percentages. The findings supported the notion that produced hydrogel membranes might be used in a professional setting as antibacterial dressings or biomaterials for quick wound healing rate.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nandhakumar Dhandapani, A Bovas Herbert Bejaxhin, Gajendran Periyaswamy, Narayan Ramanan, Jayaraman Arunprasad, Sivanraju Rajkumar, Shubham Sharma, Gurminder Singh, Fuad A Awwad, M Ijaz Khan, Emad AA Ismail
{"title":"Physicomechanical, morphological and tribo-deformation characteristics of lightweight WC/AZ31B Mg-matrix biocomposites for hip joint applications","authors":"Nandhakumar Dhandapani, A Bovas Herbert Bejaxhin, Gajendran Periyaswamy, Narayan Ramanan, Jayaraman Arunprasad, Sivanraju Rajkumar, Shubham Sharma, Gurminder Singh, Fuad A Awwad, M Ijaz Khan, Emad AA Ismail","doi":"10.1177/22808000231214359","DOIUrl":"https://doi.org/10.1177/22808000231214359","url":null,"abstract":"Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings’ improved strength and hardness, particularly when 10%–15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength charac","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of different antiviral mouthwashes on the surface roughness, hardness, and color stability of composite CAD/CAM materials","authors":"Ahmet Hazar, Ecehan Hazar","doi":"10.1177/22808000241248886","DOIUrl":"https://doi.org/10.1177/22808000241248886","url":null,"abstract":"Objective:To evaluate the effect of COVID-19 preventive mouthwashes on the surface hardness, surface roughness (Ra), and color change (ΔE) of three different polymer-based composite CAD/CAM materials (Vita Enamic (ENA), Grandio Block (GB), Lava Ultimate (LU)).Methods:A total of 100 rectangular-shaped specimens with dimensions of 2 mm × 7 mm × 12 mm were obtained by sectioning three different CAD/CAM blocks and randomly divided into five subgroups according to the 30 days of mouthwash immersion protocol as follows: Control: artificial saliva, PVP-I: 1% povidone-iodine, HP: 1.5% hydrogen peroxide, CPC: mouthwash containing 0.075% cetylpyridinium chloride, EO: mouthwash containing essential oils. Microhardness, Ra, and ΔE values were measured at baseline and after 30 days of immersion protocols. Data were analyzed using the Wald Chi-square, two-way ANOVA, and post hoc Tukey tests.Results:The independent factors (materials and solutions) significantly influenced the microhardness and color ( p < 0.001). Ra of the materials was not affected by any of the mouthwashes ( p > 0.05). The microhardness and color of each material varied significantly after immersion in PvP-I and HP ( p < 0.05). The highest percentage change in microhardness, Ra, and ΔE was found in LU immersed in PvP-I and HP mouthwashes, while the lowest change was found in ENA groups ( p < 0.05).Conclusion:Within the limitations of this study, it was found that the surface hardness and color of tested polymer-based composite CAD/CAM materials are susceptible to degradation and change after 30 days of immersion in 1% PvP-I and 1.5% HP mouthwashes.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"60 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye Wang, Xingming Ji, Xinyi Wang, Mengyu Sun, Cheng Li, Dongmei Wu
{"title":"The injectable hydrogel loading cannabidiol to regulate macrophage polarization in vitro for the treatment of chronic enteritis.","authors":"Ye Wang, Xingming Ji, Xinyi Wang, Mengyu Sun, Cheng Li, Dongmei Wu","doi":"10.1177/22808000241289022","DOIUrl":"https://doi.org/10.1177/22808000241289022","url":null,"abstract":"<p><strong>Objective: </strong>Chronic bowel disease has the characteristics of high recurrence rate, prolonged and non-healing, and the incidence has increased year by year in recent years. Cannabidiol (CBD) has significant anti-inflammatory and antioxidant activities, but it is limited by its characteristics of fat solubility and low bioavailability. This study aims to treat chronic inflammatory bowel disease by preparing a CBD-loaded hydrogel system (GelMA + CBD) that can deliver CBD in situ and improve its bioavailability through slow release.</p><p><strong>Method: </strong>The study designed and constructed GelMA + CBD, and its surface morphology was observed by scanning electron microscopy, and its pore size, swelling rate and release rate were evaluated to evaluate its bioactivity and biosafety. The expression of various inflammatory factors was detected by ELISA, and the expression of protein and reactive oxygen species were observed by laser confocal microscopy to evaluate their anti-inflammatory and antioxidant properties.</p><p><strong>Results: </strong>Our study found that GelMA + CBD with biosafety, could make CBD be slowly released, and effectively inhibit the M1-type polarization of macrophages in vitro, and promote the M2-type polarization. In addition, GelMA + CBD can also reduce the expression of pro-inflammatory factors (such as iNOS) in macrophages, and increase the expression of anti-inflammatory factors (such as Arg-1), clear intracellular reactive oxygen species (ROS), and relieve oxidative stress.</p><p><strong>Conclusion: </strong>The vitro experiments have confirmed that the CBD-loaded hydrogel system has good biosafety, and can alleviate inflammation by regulating the polarization direction of macrophages, and then inhibiting the secretion of pro-inflammatory factors, laying a strong foundation for the treatment of chronic enteritis.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241289022"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Notice: \"Comparative evaluation of Sapindus Mukorossi extract with 17% EDTA on smear layer removal in various parts of the tooth root\".","authors":"","doi":"10.1177/22808000241227499","DOIUrl":"https://doi.org/10.1177/22808000241227499","url":null,"abstract":"","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241227499"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}