Cranioplasty infection in porous hydroxyapatite: Potential antibacterial properties.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Ismail Zaed, Corrado Iaccarino, Francesca Faedo, Laura Grillini, Elisabetta Galassi, Alessandro Dotti, Angelo Nataloni, Francesca Carolina Mannella, Andrea Cardia
{"title":"Cranioplasty infection in porous hydroxyapatite: Potential antibacterial properties.","authors":"Ismail Zaed, Corrado Iaccarino, Francesca Faedo, Laura Grillini, Elisabetta Galassi, Alessandro Dotti, Angelo Nataloni, Francesca Carolina Mannella, Andrea Cardia","doi":"10.1177/22808000241311389","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties. In the present paper we studied the possible antibacterial properties of PHA in a laboratory test in order to provide a possible overview of the occurrence of post-operative infections in PHA cranioplasty.</p><p><strong>Method: </strong>The test method has been designed to evaluate the potential antimicrobial activity of specimens under dynamic contact conditions to overcome difficulties in ensuring contact of inoculum to the specimen surface. The test was conducted using <i>Staphylococcus aureus</i> ATCC6538 as a bacterial strain.</p><p><strong>Results: </strong>Two experimental sets were performed to evaluate the antimicrobial properties of the specimens against two different <i>Staphylococcus aureus</i> concentrations. The first preliminary test (a) verified the antibacterial property at 0, 1, 2, and 4 h of contact time; the second confirmatory test (b) was repeated to verify the antibacterial property at 0, 4, 8 h. In the first experiment, after the first hour of contact, the bacterial inoculum was reduced by 7.96% compared to \"inoculum only,\" which increased to 26.11% at the second hour, and up to 52.33% after 4 h. In the second experiment, the confirmation test showed that bacterial growth reaches maximum inhibition after 4 h of contact. At 4 h, there was a higher bacterial reduction of 72.93%, which decreased at 8 h (36.45%).</p><p><strong>Conclusion: </strong>Analyzing the growth trend of viable microorganisms under Dynamic Contact Conditions it can be seen that PHA cranioplasty appears to inhibit exponential growth by inducing bacterial stasis in the early hours of contact, reaching a maximum reduction within 4 h, in this adopted experimental condition.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000241311389"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000241311389","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties. In the present paper we studied the possible antibacterial properties of PHA in a laboratory test in order to provide a possible overview of the occurrence of post-operative infections in PHA cranioplasty.

Method: The test method has been designed to evaluate the potential antimicrobial activity of specimens under dynamic contact conditions to overcome difficulties in ensuring contact of inoculum to the specimen surface. The test was conducted using Staphylococcus aureus ATCC6538 as a bacterial strain.

Results: Two experimental sets were performed to evaluate the antimicrobial properties of the specimens against two different Staphylococcus aureus concentrations. The first preliminary test (a) verified the antibacterial property at 0, 1, 2, and 4 h of contact time; the second confirmatory test (b) was repeated to verify the antibacterial property at 0, 4, 8 h. In the first experiment, after the first hour of contact, the bacterial inoculum was reduced by 7.96% compared to "inoculum only," which increased to 26.11% at the second hour, and up to 52.33% after 4 h. In the second experiment, the confirmation test showed that bacterial growth reaches maximum inhibition after 4 h of contact. At 4 h, there was a higher bacterial reduction of 72.93%, which decreased at 8 h (36.45%).

Conclusion: Analyzing the growth trend of viable microorganisms under Dynamic Contact Conditions it can be seen that PHA cranioplasty appears to inhibit exponential growth by inducing bacterial stasis in the early hours of contact, reaching a maximum reduction within 4 h, in this adopted experimental condition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信