Amniotic membrane hydrogel as novel injectable platform in combination with metformin for treatment of sciatic nerve injury.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Zahra Rabiei Dolatabadi, Mona Saheli, Somayeh Solhjoo, Mehran Hosseini, Elahe Mousanejad, Mandana Jafari, Vahid Sheibani, Seyed Noureddin Nematollahi-Mahani
{"title":"Amniotic membrane hydrogel as novel injectable platform in combination with metformin for treatment of sciatic nerve injury.","authors":"Zahra Rabiei Dolatabadi, Mona Saheli, Somayeh Solhjoo, Mehran Hosseini, Elahe Mousanejad, Mandana Jafari, Vahid Sheibani, Seyed Noureddin Nematollahi-Mahani","doi":"10.1177/22808000251322865","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve tissue engineering is a field that uses cells, growth factors and biological scaffold material to provide a nutritional and physical support in the repair of nerve injuries. The specific properties of injectable human amniotic membrane-derived hydrogel including growth factors as well as anti-inflammatory and neuroprotective agents make it an ideal tool for nerve tissue repair, and metformin may also aid in nerve regeneration. The aim of this study was to investigate the effects of hydrogel derived from amniotic membrane (AM) along with metformin (MET) administration in the repair of sciatic nerve injury in male rats. We randomly divided 60 male rats into five groups. A control and four sciatic nerve compression groups including model; hydrogel; metformin and mix which received hydrogel and metformin. The recovery rate was assessed by Sciatic Functional Index (SFI), Static Sciatic Index (SSI) and von-frey test. Conduction velocity of the sciatic nerve was measured by Electrophysiological studies, and histological evaluations were performed 14 days after injury. SFI, SSI, latency time, remyelination rate and the expression of NF-200 and S-100β improved in hydrogel group. Response to mechanical stimulus, myelin density, axonal regeneration, and myelin sheath reconstruction improved in the mix group. The gastrocnemius muscle index was significantly reduced in the experimental groups while collagen fibers increased in these groups. These findings suggest that injection of hydrogel derived from decellularized amniotic membrane into the epineurium can be promoted reconstruction of peripheral nerve injury and improved functional nerve recovery. Also, metformin administration can reinforce the therapeutic effect of the hydrogel.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251322865"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000251322865","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Peripheral nerve tissue engineering is a field that uses cells, growth factors and biological scaffold material to provide a nutritional and physical support in the repair of nerve injuries. The specific properties of injectable human amniotic membrane-derived hydrogel including growth factors as well as anti-inflammatory and neuroprotective agents make it an ideal tool for nerve tissue repair, and metformin may also aid in nerve regeneration. The aim of this study was to investigate the effects of hydrogel derived from amniotic membrane (AM) along with metformin (MET) administration in the repair of sciatic nerve injury in male rats. We randomly divided 60 male rats into five groups. A control and four sciatic nerve compression groups including model; hydrogel; metformin and mix which received hydrogel and metformin. The recovery rate was assessed by Sciatic Functional Index (SFI), Static Sciatic Index (SSI) and von-frey test. Conduction velocity of the sciatic nerve was measured by Electrophysiological studies, and histological evaluations were performed 14 days after injury. SFI, SSI, latency time, remyelination rate and the expression of NF-200 and S-100β improved in hydrogel group. Response to mechanical stimulus, myelin density, axonal regeneration, and myelin sheath reconstruction improved in the mix group. The gastrocnemius muscle index was significantly reduced in the experimental groups while collagen fibers increased in these groups. These findings suggest that injection of hydrogel derived from decellularized amniotic membrane into the epineurium can be promoted reconstruction of peripheral nerve injury and improved functional nerve recovery. Also, metformin administration can reinforce the therapeutic effect of the hydrogel.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信