Journal of analytical toxicology最新文献

筛选
英文 中文
Ethyl acetate in e-liquids: Implications for breath testing. 电子液体中的乙酸乙酯:对呼气测试的影响。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-07-13 DOI: 10.1093/jat/bkae044
Alaina K Holt, Abby M Veeser, Justin L Poklis, Michelle R Peace
{"title":"Ethyl acetate in e-liquids: Implications for breath testing.","authors":"Alaina K Holt, Abby M Veeser, Justin L Poklis, Michelle R Peace","doi":"10.1093/jat/bkae044","DOIUrl":"10.1093/jat/bkae044","url":null,"abstract":"<p><p>Electronic cigarette liquids (e-liquids) can contain a variety of chemicals to impart flavors, smells and pharmacological effects. Surveillance studies have identified hundreds of chemicals used in e-liquids that have known health and safety implications. Ethyl acetate has been identified as a common constituent of e-liquids. Ethyl acetate is rapidly hydrolyzed to ethanol in vivo. Animal studies have demonstrated that inhaling >2,000 mg/L ethyl acetate can lead to the accumulation of ethanol in the blood at concentrations >1,000 mg/L, or 0.10%. A \"Heisenberg\" e-liquid was submitted to the Laboratory for Forensic Toxicology Research for analysis after a random workplace drug test resulted in a breath test result of 0.019% for a safety-sensitive position employee. Analysis of this sample resulted in the detection of 1,488 ± 6 mg/L ethyl acetate. The evaluation of purchased \"Heisenberg\" e-liquids determined that these products contain ethyl acetate. The identification of ethyl acetate in e-liquids demonstrates poor regulatory oversight and enforcement that potentially has consequences for breath ethanol testing and interpretations. The accumulation of ethanol in the breath from the ingestion/inhalation of ethyl acetate from an e-liquid used prior to a breath test may contribute to the detection of ethanol.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"413-418"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LC-MS-MS method for mitragynine and 7-hydroxymitragynine in hair and its application in authentic hair samples of suspected kratom abusers. 采用液相色谱-质谱-质谱联用方法检测毛发中的米曲宁和 7-羟基米曲宁,并将其应用于疑似滥用桔梗药者的真实毛发样本。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-07-13 DOI: 10.1093/jat/bkae041
Jongsook Rhee, Ilchung Shin, Jihyun Kim, Juseun Lee, Byungsuk Cho, Junghyun Kim, Meejung Park, Eunmi Kim
{"title":"LC-MS-MS method for mitragynine and 7-hydroxymitragynine in hair and its application in authentic hair samples of suspected kratom abusers.","authors":"Jongsook Rhee, Ilchung Shin, Jihyun Kim, Juseun Lee, Byungsuk Cho, Junghyun Kim, Meejung Park, Eunmi Kim","doi":"10.1093/jat/bkae041","DOIUrl":"10.1093/jat/bkae041","url":null,"abstract":"<p><p>Kratom is a natural psychoactive product known primarily in Southeast Asia, including Thailand, Malaysia, etc. It is also known as krathom, kakuam, ithang, thom (Thailand), biak-biak, ketum (Malaysia) and mambog (Philippines) and is sometimes used as an opium substitute. It is stimulant at doses of 1-5 g, analgesic at doses of 5-15 g and euphoric and sedative at doses of >15 g. Mitragynine is the most abundant indole compound in kratom (Mitragyna speciosa) and is metabolized in humans to 7-hydroxymitragynine, the more active metabolite. Adverse effects include seizures, nausea, vomiting, diarrhea, tachycardia, restlessness, tremors, hallucinations and death. There are few studies on the analytical method for the detection of mitragynine and 7-hydroxymitragynine in hair. Therefore, this study proposes a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the analysis of kratom in hair. Hair samples were first weighed to ∼10 mg and washed with methanol. Then the washed hair samples were cut into pieces and incubated in methanol with stirring and heating (16 h/38℃). Extracts were then analyzed by LC-MS-MS. This method was validated by determining the limit of detection (LOD), limit of quantification, linearity, intra- and inter-day accuracy and precision, recovery and matrix effects. The intra- and inter-day precision (CV%) and accuracy (bias%) were within ±20%, which was considered acceptable. Using this newly developed LC-MS-MS method, the simultaneous detection of mitragynine and 7-hydroxymitragynine in six authentic hair samples was achieved to provide the direct evidence of kratom use in the past. Mitragynine concentrations ranged from 16.0 to 2,067 pg/mg (mean 905.3 pg/mg), and 7-hydroxymitragynine concentrations ranged from 0.34 to 15 pg/mg (mean 7.4 pg/mg) in six authentic hair samples from kratom abusers. This may be due to the higher sensitivity of the LOD in this study, with values of 0.05 pg/mg for mitragynine and 0.2 pg/mg for 7-hydroxymitragynine in hair.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"429-438"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Cross-reactivity of 24 cannabinoids and metabolites in blood using the Immunalysis Cannabinoids Direct enzyme-linked immunosorbent assay. 更正:使用 Immunalysis Cannabinoids Direct 酶联免疫吸附测定法检测血液中 24 种大麻素和代谢物的交叉反应。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-07-13 DOI: 10.1093/jat/bkae054
{"title":"Correction to: Cross-reactivity of 24 cannabinoids and metabolites in blood using the Immunalysis Cannabinoids Direct enzyme-linked immunosorbent assay.","authors":"","doi":"10.1093/jat/bkae054","DOIUrl":"10.1093/jat/bkae054","url":null,"abstract":"","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"e5"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Development of a dispersive liquid-liquid microextraction method for the evaluation of maternal-fetal exposure to cocaine employing human umbilical cord tissue. 更正:开发一种分散液-液微萃取方法,利用人体脐带组织评估母婴接触可卡因的情况。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-07-13 DOI: 10.1093/jat/bkae047
{"title":"Correction to: Development of a dispersive liquid-liquid microextraction method for the evaluation of maternal-fetal exposure to cocaine employing human umbilical cord tissue.","authors":"","doi":"10.1093/jat/bkae047","DOIUrl":"10.1093/jat/bkae047","url":null,"abstract":"","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"e4"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a dispersive liquid-liquid microextraction method for the evaluation of maternal-fetal exposure to cocaine employing human umbilical cord tissue. 开发一种分散液-液微萃取方法,利用人体脐带组织评估母胎接触可卡因的情况。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae025
Gabriela de Paula Meirelles, Jefferson Pereira E Silva, Beatriz Aparecida Passos Bismara Paranhos, Mauricio Yonamine
{"title":"Development of a dispersive liquid-liquid microextraction method for the evaluation of maternal-fetal exposure to cocaine employing human umbilical cord tissue.","authors":"Gabriela de Paula Meirelles, Jefferson Pereira E Silva, Beatriz Aparecida Passos Bismara Paranhos, Mauricio Yonamine","doi":"10.1093/jat/bkae025","DOIUrl":"10.1093/jat/bkae025","url":null,"abstract":"<p><p>Illicit drug use is a serious and complex public health problem, not only due to the severity of the health damage but also to the social implications, such as marginalization and drug trafficking. Currently, cocaine (COC) is among the most abused drugs worldwide with about 22 million users. Drug abuse has also been found in women during the pregnancy period, which has shed light on a new group for epidemiology. The diagnosis of COC use in these cases usually depends largely on the mother's reports, which in several cases omit or deny consumption. Therefore, considering physical-chemical methods of sample preparation and exposure biomarkers, the development of analytic toxicological methods can help to confirm drug use during pregnancy. Thus, the objective of the present work was to develop an analytical method based on dispersive liquid-liquid microextraction for the determination of COC analytes, using umbilical cord tissue as an alternative biological matrix, and detection by gas chromatography coupled to mass spectrometry. Therefore, after optimization, the dispersive liquid-liquid microextraction method was fully validated for quantification of COC, benzoylecgonine, cocaethylene, ecgonine, ecgonine methyl ester and norcocaine. The limits of detection were between 15 and 25 ng/g, the limits of quantification were 30 ng/g for ecgonine and 25 ng/g for the other analytes. Linearity ranged from the limits of quantification to 1,000 ng/g. Coefficients of variation for intra-assay precision were <18.5%, inter-assay was <8.75% and bias was <16.4% for all controls. The developed method was applied in 10 suspected positive samples, based on the mother's report and maternal urine screening and confirmation. COC, benzoylecgonine, ecgonine and ecgonine methyl ester were quantified in four umbilical cords with concentrations that ranged from 39.6 to 420.5 ng/g.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"263-272"},"PeriodicalIF":2.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of iso-LSD metabolism using human liver microsomes in comparison to LSD and its applicability as urinary biomarker for LSD consumption. 利用人体肝脏微粒体对异 LSD 代谢的表征与 LSD 的比较及其作为服用 LSD 的尿液生物标志物的适用性。
IF 2.5 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae023
Xue Qin Ng, Evelyn Mei Ling Goh, Asimah Hamzah, Yi Ju Yao, Hooi Yan Moy
{"title":"Characterization of iso-LSD metabolism using human liver microsomes in comparison to LSD and its applicability as urinary biomarker for LSD consumption.","authors":"Xue Qin Ng, Evelyn Mei Ling Goh, Asimah Hamzah, Yi Ju Yao, Hooi Yan Moy","doi":"10.1093/jat/bkae023","DOIUrl":"10.1093/jat/bkae023","url":null,"abstract":"<p><p>Urinalysis of lysergic acid diethylamide (LSD) poses a challenge due to its rapid metabolism, resulting in little to no LSD detectable in urine. Instead, its primary metabolite, 2-oxo-3-hydroxy-LSD, is predominantly detected. In this study, we observed several urine profiles with iso-LSD detected together with 2-oxo-3-hydroxy-LSD. Iso-LSD is derived from illicit preparation of LSD as a major contaminant, and it was detected at higher abundance than LSD and 2-oxo-3-hydroxy-LSD in certain urine samples. Therefore, the metabolism of iso-LSD and its potential as a viable urinary biomarker for confirming LSD consumption is of interest. For metabolism studies, LSD and iso-LSD were incubated in human liver microsomes (HLMs) at 0 min, 60 min and 120 min to characterize their metabolites using LC-QTOF-MS. For urinary analysis, 500 µL of urine samples underwent enzymatic hydrolysis and clean-up using supported-liquid extraction (SLE) prior to analysis by LC-QTOF-MS. From HLM incubation study of LSD, the metabolites detected were dihydroxy-LSD, 2-oxo-LSD, N-desmethyl-LSD (nor-LSD) and 2-oxo-3-hydroxy-LSD with LSD levels decreasing significantly throughout all time points, consistent with the existing literatures. For HLM study of iso-LSD, metabolites eluting at retention times after the corresponding metabolites of LSD were detected, with iso-LSD levels showing only a slight decrease throughout all time points, due to a slower metabolism of iso-LSD compared to LSD. These findings corroborate with the urinalysis of 24 authentic urine samples, where iso-LSD with 2-oxo-3-hydroxy-LSD was detected in the absence of LSD. Based on our findings, iso-LSD is commonly detected in urine (18 out of 24 samples) sometimes with traces of possible 2-oxo-3-hydroxy-iso-LSD. The slower metabolism and high detection rate in urine make iso-LSD a viable urinary biomarker for confirming LSD consumption, especially in the absence of LSD and/or 2-oxo-3-hydroxy-LSD.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"281-288"},"PeriodicalIF":2.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enantiomer-specific analysis of amphetamine in urine, oral fluid and blood. 尿液、口服液和血液中苯丙胺对映体的特异性分析。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae038
Eirin Bakke, Mariann Nilsen Terland, Dag Helge Strand, Elisabeth Leere Øiestad, Gudrun Høiseth
{"title":"Enantiomer-specific analysis of amphetamine in urine, oral fluid and blood.","authors":"Eirin Bakke, Mariann Nilsen Terland, Dag Helge Strand, Elisabeth Leere Øiestad, Gudrun Høiseth","doi":"10.1093/jat/bkae038","DOIUrl":"10.1093/jat/bkae038","url":null,"abstract":"<p><p>Illegal amphetamine is usually composed of a racemic mixture of the two enantiomers (S)- and (R)-amphetamine. However, when amphetamine is used in medical treatment, the more potent (S)-amphetamine enantiomer is used. Enantiomer-specific analysis of (S)- and (R)-amphetamine is therefore used to separate legal medical use from illegal recreational use. The aim of the present study was to describe our experience with enantiomer-specific analysis of amphetamine in urine and oral fluid, as well as blood, and examine whether the distribution of the two enantiomers seems to be the same in different matrices. We investigated 1,722 urine samples and 1,977 oral fluid samples from prison inmates, and 652 blood samples from suspected drugged drivers, where prescription of amphetamine was reported. Analyses were performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). The enantiomer separation was achieved by using a chiral column, and results from the method validation are reported. Samples containing <60% (S)-amphetamine were interpreted as representing illegal use of amphetamine. The distribution of the two enantiomers was compared between different matrices. In urine and oral fluid, the mean amount of (S)-amphetamine was 45.2 and 43.7%, respectively, while in blood, the mean amount of (S)-amphetamine was 45.8%. There was no statistically significant difference in the amount of (S)-amphetamine between urine and oral fluid samples and between urine and blood samples, but the difference was significant in blood compared to oral fluid samples (P < 0.001). Comparison of urine and oral fluid between similar populations indicated that enantiomers of amphetamine can be interpreted in the same way, although marginally higher amounts of (R)-amphetamine may occur in oral fluid. Oral fluid, having several advantages, especially during collection, could be a preferred matrix in testing for illegal amphetamine intake in users of medical amphetamine.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"254-262"},"PeriodicalIF":2.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of homemade cannabis edibles by UHPLC-HRMS after standard addition method. 在标准添加法之后,用超高压液相色谱-高分辨质谱法分析自制大麻药片。
IF 2.5 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae014
Pauline Thiebot, Romain Magny, Jérôme Langrand, Laurène Dufayet, Pascal Houze, Laurence Labat
{"title":"Analysis of homemade cannabis edibles by UHPLC-HRMS after standard addition method.","authors":"Pauline Thiebot, Romain Magny, Jérôme Langrand, Laurène Dufayet, Pascal Houze, Laurence Labat","doi":"10.1093/jat/bkae014","DOIUrl":"10.1093/jat/bkae014","url":null,"abstract":"<p><p>With recent evolution of cannabis legalization around the world, cannabis edibles are booming, and determining their concentration in Δ9-tetrahydrocannabinol (Δ9-THC), the regulated psychoactive substance, remains a challenge for toxicology laboratories, which must prove whether the product has legal status or not. Cannabinoids are a large family of structurally similar and lipophilic molecules, requiring dedicated pre-analytical methods, as well as efficient chromatographic separation to differentiate cannabinoid isomers which are distinguished by their psychoactive properties and their legal status. Here, we present two independent cases of cannabis edibles, for which we performed analysis of homemade cannabis chocolate cakes and of the resins and herbs used for cooking. Quantitation was carried out with a new developed standard addition method, to avoid matrix effects and matrix-dependent calibration. Extraction by QuEChERs method, followed by targeted and non-targeted analysis by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry (UHPLC-HRMS) allowed the identification of several phytocannabinoids, mainly Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and their acid precursors Δ9-THC acid (THCA) and CBD acid (CBDA). Δ9-THC was identified in significant concentrations (mg/g) in both edibles, even though one was prepared with CBD herb. This work highlights the need to analyze cannabis edibles, as well as the resins and herbs used in their preparation if it is homemade, and it proposes a reliable analytical method for toxicology laboratories.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"372-379"},"PeriodicalIF":2.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME). 利用分散液-液微萃取法(DLLME)测定口腔液样品中氯胺酮及其代谢物和类似物的绿色毒理学分析程序。
IF 2.5 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae018
Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa
{"title":"Green Analytical Toxicology procedure for determination of ketamine, its metabolites and analogues in oral fluid samples using dispersive liquid-liquid microextraction (DLLME).","authors":"Juliana Ribeiro Ibiapina Leitão Oliveira, Leonardo Costalonga Rodrigues, Júlia Martinelli Magalhães Kahl, Débora Zorrón Berlinck, Jose Luiz Costa","doi":"10.1093/jat/bkae018","DOIUrl":"10.1093/jat/bkae018","url":null,"abstract":"<p><p>New psychoactive substances (NPS) are often synthesized via small changes in the molecular structure, producing drugs whose effect and potency are not yet fully known. Ketamine is one of the oldest NPS, with therapeutic use in human and veterinary medicine authorized in several countries, being metabolized mainly into norketamine and 6-hydroxy-norketamine. Furthermore, two structural analogues of ketamine have recently been identified, deschloroketamine and 2-fluorodeschloroketamine, marketed as drugs of abuse. To comply with Green Analytical Toxicology (GAT) fundamentals, miniaturized techniques such as dispersive liquid-liquid microextraction (DLLME) were employed to determine toxicants in biological fluids. An analytical method for determining ketamine, its metabolites and its analogues in oral fluid was fully developed and validated by using DLLME and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The extraction parameters were optimized by multivariate analysis, obtaining the best conditions with 200 μL of sample, 100 μL of methanol as dispersive solvent and 50 μL of chloroform as extractor solvent. Linearity was obtained from 10 to 1,000 ng/mL, with limit of detection (LOD) and lower limit of quantification (LLOQ) at 10 ng/mL. Imprecision (% relative standard deviation) and bias (%) were less than 8.2% and 9.5%, respectively. The matrix effect did not exceed 10.6%, and the recovery values varied from 24% to 42%. No matrix interference and good selectivity in the evaluation of 10 different sources of oral fluid and 42 drugs at 500 ng/mL, respectively, were observed. The method was applied in the analysis of 29 authentic oral fluid samples and had its green characteristic evaluated by three different tools: the Green Analytical Procedure Index (GAPI), the Analytical Eco-Scale and the Analytical GREEnness (AGREE) metrics.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"332-342"},"PeriodicalIF":2.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the human metabolism of hexahydrocannabinol by non-targeted liquid chromatography-high-resolution tandem mass spectrometry. 非靶向液相色谱-高分辨串联质谱法揭示六氢大麻酚在人体中的代谢。
IF 2.3 3区 医学
Journal of analytical toxicology Pub Date : 2024-06-11 DOI: 10.1093/jat/bkae022
Florian Pitterl, Marion Pavlic, Jianmei Liu, Herbert Oberacher
{"title":"Insights into the human metabolism of hexahydrocannabinol by non-targeted liquid chromatography-high-resolution tandem mass spectrometry.","authors":"Florian Pitterl, Marion Pavlic, Jianmei Liu, Herbert Oberacher","doi":"10.1093/jat/bkae022","DOIUrl":"10.1093/jat/bkae022","url":null,"abstract":"<p><p>Hexahydrocannabinol (HHC), 6,6,9-trimethyl-3-pentyl-6a,7,8,9,10,10a-hexahydrobenzo[c]chromen-1-ol, is a semi-synthetic cannabinoid that has presented challenges to analytical laboratories due to its emergence and spread in the drug market. The lack of information on human pharmacokinetics hinders the development and application of presumptive and confirmatory tests for reliably detecting HHC consumption. To address this knowledge gap, we report the analytical results obtained from systematic forensic toxicological analysis of body-fluid samples collected from three individuals suspected of drug-impaired driving after HHC consumption. Urine and plasma samples were analyzed using non-targeted liquid chromatography-high-resolution tandem mass spectrometry. The results provided evidence that HHC undergoes biotransformation reactions similar to other well-characterized cannabinoids, such as ∆9-tetrahydrocannabinol or cannabidiol. Notably, HHC itself was only detectable in plasma samples, not in urine samples. The observed Phase I reactions involved oxidation of C11 and the pentyl side chain, leading to corresponding hydroxylated and carboxylic acid species. Additionally, extensive glucuronidation of HHC and its Phase I metabolites was evident.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"350-358"},"PeriodicalIF":2.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信