Journal of Advances in Modeling Earth Systems最新文献

筛选
英文 中文
The HadGEM3-GC3.1 Contribution to the CMIP6 Detection and Attribution Model Intercomparison Project HadGEM3-GC3.1 对 CMIP6 检测和归因模型相互比较项目的贡献
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-08-03 DOI: 10.1029/2023MS004135
Gareth S. Jones, Martin B. Andrews, Timothy Andrews, Ed Blockley, Andrew Ciavarella, Nikos Christidis, Daniel F. Cotterill, Fraser C. Lott, Jeff Ridley, Peter A. Stott
{"title":"The HadGEM3-GC3.1 Contribution to the CMIP6 Detection and Attribution Model Intercomparison Project","authors":"Gareth S. Jones,&nbsp;Martin B. Andrews,&nbsp;Timothy Andrews,&nbsp;Ed Blockley,&nbsp;Andrew Ciavarella,&nbsp;Nikos Christidis,&nbsp;Daniel F. Cotterill,&nbsp;Fraser C. Lott,&nbsp;Jeff Ridley,&nbsp;Peter A. Stott","doi":"10.1029/2023MS004135","DOIUrl":"https://doi.org/10.1029/2023MS004135","url":null,"abstract":"<p>The UK contribution to the Detection and Attribution Model Intercomparison Project (DAMIP), part of the sixth phase of the Climate Model Intercomparison Project (CMIP6), is described. The lower atmosphere and ocean resolution configuration of the latest Hadley Centre global environmental model, HadGEM3-GC3.1, is used to create simulations driven either with historical changes in anthropogenic well-mixed greenhouse gases, anthropogenic aerosols, or natural climate factors. Global mean near-surface air temperatures from the HadGEM3-GC31-LL simulations are consistent with CMIP6 model ensembles for the equivalent experiments. While the HadGEM3-GC31-LL simulations with anthropogenic and natural forcing factors capture the overall observed warming, the lack of marked simulated warming until the 1990s is diagnosed as due to aerosol cooling mostly offsetting the well-mixed greenhouse gas warming until then. The model has unusual temperature variability over the Southern Ocean related to occasional deep convection bringing heat to the surface. This is most prominent in the model's aerosol only simulations, which have the curious feature of warming in the high southern latitudes, while the rest of the globe cools, a behavior not seen in other CMIP6 models. This has implications for studies that assume model responses, from different climate drivers, can be linearly combined. While DAMIP was predominantly designed for detection and attribution studies, the experiments are also very valuable for understanding how different climate drivers influence a model, and thus for interpretating the responses of combined anthropogenic and natural driven simulations. We recommend institutions provide model simulations for the high priority DAMIP experiments.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Eigenvalue-Based Framework for Constraining Anisotropic Eddy Viscosity 基于特征值的各向异性涡流粘度约束框架
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-08-01 DOI: 10.1029/2024MS004375
Scott D. Bachman
{"title":"An Eigenvalue-Based Framework for Constraining Anisotropic Eddy Viscosity","authors":"Scott D. Bachman","doi":"10.1029/2024MS004375","DOIUrl":"https://doi.org/10.1029/2024MS004375","url":null,"abstract":"<p>Eddy viscosity is employed throughout the majority of numerical fluid dynamical models, and has been the subject of a vigorous body of research spanning a variety of disciplines. It has long been recognized that the proper description of eddy viscosity uses tensor mathematics, but in practice it is almost always employed as a scalar due to uncertainty about how to constrain the extra degrees of freedom and physical properties of its tensorial form. This manuscript borrows techniques from outside the realm of geophysical fluid dynamics to consider the eddy viscosity tensor using its eigenvalues and eigenvectors, establishing a new framework by which tensorial eddy viscosity can be tested. This is made possible by a careful analysis of an operation called tensor unrolling, which casts the eigenvalue problem for a fourth-order tensor into a more familiar matrix-vector form, whereby it becomes far easier to understand and manipulate. New constraints are established for the eddy viscosity coefficients that are guaranteed to result in energy dissipation, backscatter, or a combination of both. Finally, a testing protocol is developed by which tensorial eddy viscosity can be systematically evaluated across a wide range of fluid regimes.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004375","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Aerosol Radiative Forcing and Climate in E3SM: Impacts of New Cloud Microphysics and Improved Wet Removal Treatments 改进 E3SM 中的气溶胶辐射强迫和气候:新的云微物理学和改进的湿清除处理的影响
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-31 DOI: 10.1029/2023MS004059
Yunpeng Shan, Jiwen Fan, Kai Zhang, Jacob Shpund, Christopher Terai, Guang J. Zhang, Xiaoliang Song, Chih-Chieh-Jack Chen, Wuyin Lin, Xiaohong Liu, Manish Shrivastava, Hailong Wang, Shaocheng Xie
{"title":"Improving Aerosol Radiative Forcing and Climate in E3SM: Impacts of New Cloud Microphysics and Improved Wet Removal Treatments","authors":"Yunpeng Shan,&nbsp;Jiwen Fan,&nbsp;Kai Zhang,&nbsp;Jacob Shpund,&nbsp;Christopher Terai,&nbsp;Guang J. Zhang,&nbsp;Xiaoliang Song,&nbsp;Chih-Chieh-Jack Chen,&nbsp;Wuyin Lin,&nbsp;Xiaohong Liu,&nbsp;Manish Shrivastava,&nbsp;Hailong Wang,&nbsp;Shaocheng Xie","doi":"10.1029/2023MS004059","DOIUrl":"https://doi.org/10.1029/2023MS004059","url":null,"abstract":"<p>Numerous Earth system models exhibit excessive aerosol effective forcing at the top of the atmosphere (TOA), including the Department of Energy's Energy Exascale Earth System Model (E3SM). Here, in the context of the E3SM version 3 effort, the predicted particle property (P3) stratiform cloud microphysics scheme and an enhanced deep convection parameterization suite (ZM_plus) are implemented into E3SM. The ZM_plus includes a convective cloud microphysics scheme, a multi-scale coherent structure parameterization for mesoscale convective systems, and a revised cloud base mass flux formulation considering impacts of the large-scale environment. The P3 scheme improved cloud and radiation particularly over the Northern Hemisphere and the frequency of heavy precipitation over the tropics, and the ZM_plus improved clouds in the tropics. P3 decreases aerosol effective forcing by 0.15 W m<sup>−2</sup>, while the ZM_plus increases it by 0.27 W m<sup>−2</sup>, resulting from excessive direct (0.31 W m<sup>−2</sup>) and indirect forcing (−1.79 W m<sup>−2</sup>). The excessive aerosol forcings are due to aerosol overestimation associated with insufficient aerosol wet removal. By improving the physical treatments in the aerosol wet removal, we effectively mitigate anthropogenic aerosol overestimation and thus attenuate direct (0.09 W m<sup>−2</sup>) and indirect aerosol forcing (−1.52 W m<sup>−2</sup>). Adjustment to primary organic matter hygroscopicity reduces direct and indirect forcing to more reasonable values: −0.13 W m<sup>−2</sup> and −1.31 W m<sup>−2</sup>, respectively. On climatology, improved aerosol treatments mitigate overestimation of aerosol optical depth.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of Diagnostics for AMOC Heat Transport Applied to the CESM Large Ensemble 应用于 CESM 大型集合的 AMOC 热传输诊断比较
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-30 DOI: 10.1029/2023MS003978
C Spencer Jones, Scout Jiang, Ryan P. Abernathey
{"title":"A Comparison of Diagnostics for AMOC Heat Transport Applied to the CESM Large Ensemble","authors":"C Spencer Jones,&nbsp;Scout Jiang,&nbsp;Ryan P. Abernathey","doi":"10.1029/2023MS003978","DOIUrl":"https://doi.org/10.1029/2023MS003978","url":null,"abstract":"<p>Atlantic time-mean heat transport is northward at all latitudes and exhibits strong multidecadal variability between about 30°N and 55°N. Atlantic heat transport variability influences many aspects of the climate system, including regional surface temperatures, subpolar heat content, Arctic sea-ice concentration and tropical precipitation patterns. Atlantic heat transport and heat transport variability are commonly partitioned into two components: the heat transport by the Atlantic Meridional Overturning Circulation (AMOC) and the heat transport by the gyres. In this paper we compare four different methods for performing this partition, and we apply these methods to the Community Earth System Model Large Ensemble at 34°N, 26°N and 5°S. We discuss the strengths and weaknesses of each method. The four methods all give significantly different estimates for the proportion of the time-mean heat transport performed by AMOC. One of these methods is a new physically-motivated method based on the pathway of the northward-flowing part of AMOC. This paper presents a preliminary version of our method that works only when the AMOC follows the western boundary of the basin. All the methods agree that at 26°N, 80%–100% of heat transport variability at 2–10 years timescales is performed by AMOC, but there is more disagreement between methods in attributing multidecadal variability, with some methods showing a compensation between the AMOC and gyre heat transport variability.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Training Warm-Rain Bulk Microphysics Schemes Using Super-Droplet Simulations 利用超级液滴模拟训练暖雨块体微物理模型
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-26 DOI: 10.1029/2023MS004028
Sajjad Azimi, Anna Jaruga, Emily de Jong, Sylwester Arabas, Tapio Schneider
{"title":"Training Warm-Rain Bulk Microphysics Schemes Using Super-Droplet Simulations","authors":"Sajjad Azimi,&nbsp;Anna Jaruga,&nbsp;Emily de Jong,&nbsp;Sylwester Arabas,&nbsp;Tapio Schneider","doi":"10.1029/2023MS004028","DOIUrl":"10.1029/2023MS004028","url":null,"abstract":"<p>Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Imbalance, Uncertainty Quantification, and Transfer Learning in Data-Driven Parameterizations: Lessons From the Emulation of Gravity Wave Momentum Transport in WACCM 数据驱动参数化中的数据失衡、不确定性量化和迁移学习:WACCM 重力波动量传输模拟的经验教训
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-26 DOI: 10.1029/2023MS004145
Y. Qiang Sun, Hamid A. Pahlavan, Ashesh Chattopadhyay, Pedram Hassanzadeh, Sandro W. Lubis, M. Joan Alexander, Edwin P. Gerber, Aditi Sheshadri, Yifei Guan
{"title":"Data Imbalance, Uncertainty Quantification, and Transfer Learning in Data-Driven Parameterizations: Lessons From the Emulation of Gravity Wave Momentum Transport in WACCM","authors":"Y. Qiang Sun,&nbsp;Hamid A. Pahlavan,&nbsp;Ashesh Chattopadhyay,&nbsp;Pedram Hassanzadeh,&nbsp;Sandro W. Lubis,&nbsp;M. Joan Alexander,&nbsp;Edwin P. Gerber,&nbsp;Aditi Sheshadri,&nbsp;Yifei Guan","doi":"10.1029/2023MS004145","DOIUrl":"10.1029/2023MS004145","url":null,"abstract":"<p>Neural networks (NNs) are increasingly used for data-driven subgrid-scale parameterizations in weather and climate models. While NNs are powerful tools for learning complex non-linear relationships from data, there are several challenges in using them for parameterizations. Three of these challenges are (a) data imbalance related to learning rare, often large-amplitude, samples; (b) uncertainty quantification (UQ) of the predictions to provide an accuracy indicator; and (c) generalization to other climates, for example, those with different radiative forcings. Here, we examine the performance of methods for addressing these challenges using NN-based emulators of the Whole Atmosphere Community Climate Model (WACCM) physics-based gravity wave (GW) parameterizations as a test case. WACCM has complex, state-of-the-art parameterizations for orography-, convection-, and front-driven GWs. Convection- and orography-driven GWs have significant data imbalance due to the absence of convection or orography in most grid points. We address data imbalance using resampling and/or weighted loss functions, enabling the successful emulation of parameterizations for all three sources. We demonstrate that three UQ methods (Bayesian NNs, variational auto-encoders, and dropouts) provide ensemble spreads that correspond to accuracy during testing, offering criteria for identifying when an NN gives inaccurate predictions. Finally, we show that the accuracy of these NNs decreases for a warmer climate (4 × CO<sub>2</sub>). However, their performance is significantly improved by applying transfer learning, for example, re-training only one layer using ∼1% new data from the warmer climate. The findings of this study offer insights for developing reliable and generalizable data-driven parameterizations for various processes, including (but not limited to) GWs.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regression Forest Approaches to Gravity Wave Parameterization for Climate Projection 用于气候预测的重力波参数化回归森林方法
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-25 DOI: 10.1029/2023MS004184
David S. Connelly, Edwin P. Gerber
{"title":"Regression Forest Approaches to Gravity Wave Parameterization for Climate Projection","authors":"David S. Connelly,&nbsp;Edwin P. Gerber","doi":"10.1029/2023MS004184","DOIUrl":"10.1029/2023MS004184","url":null,"abstract":"<p>We train random and boosted forests, two machine learning architectures based on regression trees, to emulate a physics-based parameterization of atmospheric gravity wave momentum transport. We compare the forests to a neural network benchmark, evaluating both offline errors and online performance when coupled to an atmospheric model under the present day climate and in 800 and 1,200 ppm CO<sub>2</sub> global warming scenarios. Offline, the boosted forest exhibits similar skill to the neural network, while the random forest scores significantly lower. Both forest models couple stably to the atmospheric model, and control climate integrations with the boosted forest exhibit lower biases than those with the neural network. Integrations with all three data-driven emulators successfully capture the Quasi-Biennial Oscillation (QBO) and sudden stratospheric warmings, key modes of stratospheric variability, with the boosted forest more accurate than the random forest in replicating their statistics across our range of carbon dioxide perturbations. The boosted forest and neural network capture the sign of the QBO period response to increased CO<sub>2</sub>, though both struggle with the magnitude of this response under the more extreme 1,200 ppm scenario. To investigate the connection between performance in the control climate and the ability to generalize, we use techniques from interpretable machine learning to understand how the data-driven methods use physical information. We leverage this understanding to develop a retraining procedure that improves the coupled performance of the boosted forest in the control climate and under the 800 ppm CO<sub>2</sub> scenario.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physically-Informed Super-Resolution Downscaling of Antarctic Surface Melt 南极地表融化的物理信息超分辨率降尺度研究
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-25 DOI: 10.1029/2023MS004212
Sophie de Roda Husman, Zhongyang Hu, Maurice van Tiggelen, Rebecca Dell, Jordi Bolibar, Stef Lhermitte, Bert Wouters, Peter Kuipers Munneke
{"title":"Physically-Informed Super-Resolution Downscaling of Antarctic Surface Melt","authors":"Sophie de Roda Husman,&nbsp;Zhongyang Hu,&nbsp;Maurice van Tiggelen,&nbsp;Rebecca Dell,&nbsp;Jordi Bolibar,&nbsp;Stef Lhermitte,&nbsp;Bert Wouters,&nbsp;Peter Kuipers Munneke","doi":"10.1029/2023MS004212","DOIUrl":"10.1029/2023MS004212","url":null,"abstract":"<p>Because Antarctic surface melt is mostly driven by local processes, its simulation necessitates high-resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–30 km) is inadequate for capturing small-scale melt processes. To address this limitation, we present SUPREME (SUPer-REsolution-based Melt Estimation over Antarctica), a deep learning method to downscale surface melt to 5.5 km resolution using a physically-informed super-resolution model. The physical information integrated into the model originates from observations tied to surface melt, specifically remote sensing-derived albedo and elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at 27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly RMSE and bias of 5.5 mm w.e. yr<sup>−1</sup> and 4.5 mm w.e. yr<sup>−1</sup>, respectively. Validation at five automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing products associated with surface melt than super-resolution models lacking physical constraints. While further validation of SUPREME is needed, our study highlights the potential of super-resolution techniques with physical constraints for high-resolution surface melt monitoring in Antarctica, providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as hydrofracturing.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004212","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUPHRE: A Reactive Transport Model With Unsaturated and Density-Dependent Flow SUPHRE:非饱和与密度相关流的反应迁移模型
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-23 DOI: 10.1029/2023MS003975
Zhaoyang Luo, Jun Kong, Chengji Shen, D. A. Barry
{"title":"SUPHRE: A Reactive Transport Model With Unsaturated and Density-Dependent Flow","authors":"Zhaoyang Luo,&nbsp;Jun Kong,&nbsp;Chengji Shen,&nbsp;D. A. Barry","doi":"10.1029/2023MS003975","DOIUrl":"10.1029/2023MS003975","url":null,"abstract":"<p>Although unsaturated and density-dependent flow affect solute fate in groundwater, they are rarely both included in reactive transport models. Using the operator-splitting method, a new reactive transport model (SUPHRE) was developed by combining a variable-saturation and variable-density multiple-component solute transport model (SUTRA-MS) with a geochemical reaction module (PhreeqcRM). In contrast to existing reactive transport models, SUPHRE accounts for both unsaturated and density-dependent flow. Model setup for SUPHRE is convenient, as only one setup file is required in addition to the usual input files of SUTRA-MS and PhreeqcRM. By further implementing a time-variant boundary condition into SUTRA-MS, SUPHRE can simulate multi-component reactive transport in tidally influenced coastal unconfined aquifers where unsaturated and density-dependent flow prevail. Two examples were used to validate the new reactive transport model, including single-species decay and sorption within a one-dimensional soil column and a four-species decay chain in a two-dimensional aquifer. Following validation, SUPHRE was adopted to reveal unsaturated flow effects on oxygen consumption and nitrate reduction in tidally influenced coastal unconfined aquifers. Whether for simulating oxygen consumption or nitrate reduction, there were visible deviations between numerical results without and with unsaturated flow, highlighting that unsaturated flow can affect reactive solute transport and transformation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003975","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Radiation Triggers the Bimodal Leaf Phenology of Central African Evergreen Broadleaved Forests 太阳辐射引发中非常绿阔叶林的双峰叶片物候期
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-23 DOI: 10.1029/2023MS004014
Liyang Liu, Philippe Ciais, Fabienne Maignan, Yuan Zhang, Nicolas Viovy, Marc Peaucelle, Elizabeth Kearsley, Koen Hufkens, Marijn Bauters, Colin A. Chapman, Zheng Fu, Shangrong Lin, Haibo Lu, Jiashun Ren, Xueqin Yang, Xianjin He, Xiuzhi Chen
{"title":"Solar Radiation Triggers the Bimodal Leaf Phenology of Central African Evergreen Broadleaved Forests","authors":"Liyang Liu,&nbsp;Philippe Ciais,&nbsp;Fabienne Maignan,&nbsp;Yuan Zhang,&nbsp;Nicolas Viovy,&nbsp;Marc Peaucelle,&nbsp;Elizabeth Kearsley,&nbsp;Koen Hufkens,&nbsp;Marijn Bauters,&nbsp;Colin A. Chapman,&nbsp;Zheng Fu,&nbsp;Shangrong Lin,&nbsp;Haibo Lu,&nbsp;Jiashun Ren,&nbsp;Xueqin Yang,&nbsp;Xianjin He,&nbsp;Xiuzhi Chen","doi":"10.1029/2023MS004014","DOIUrl":"10.1029/2023MS004014","url":null,"abstract":"<p>Central African evergreen broadleaved forests around the equator exhibit a double annual cycle for canopy phenology and carbon uptake seasonality. The underlying drivers of this behavior are poorly understood and the double seasonality is not captured by land surface models (LSM). In this study, we developed a new leaf phenology module into the ORCHIDEE LSM (hereafter ORCHIDEE-AFP), which utilizes short-wave incoming radiation (SWd) as the main driver of leaf shedding and partial rejuvenation of the canopy, to simulate the double seasonality of central African forests. The ORCHIDEE-AFP model has been evaluated by using field data from two forest sites and satellite observations of the enhanced vegetation index (EVI), which is a proxy of young leaf area index (LAI<sub>Young</sub>) with leafage less than 6 months, as well as six products of GPP or GPP proxies. Results demonstrate that ORCHIDEE-AFP successfully reproduces observed leaf turnover (<i>R</i> = 0.45) and young leaf abundance (<i>R</i> = 0.74), and greatly improve the representation of the bimodal leaf phenology. The proportion of grid cells with a significant positive correlation between the seasonality of modeled LAI<sub>Young</sub> and observed EVI increased from 0.2% in the standard model to 27% in the new model. For photosynthesis, the proportions of grid cells with significant positive correlations between modeled and observed seasonality range from 26% to 65% across the six GPP evaluation products. The improved performance of the ORCHIDEE-AFP model in simulating leaf phenology and photosynthesis of central African forests will allow a more accurate assessment of the impacts of climate change in tropical forests.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信