Gregory LeClaire Wagner, Adeline Hillier, Navid C. Constantinou, Simone Silvestri, Andre Souza, Keaton J. Burns, Chris Hill, Jean-Michel Campin, John Marshall, Raffaele Ferrari
{"title":"Formulation and Calibration of CATKE, a One-Equation Parameterization for Microscale Ocean Mixing","authors":"Gregory LeClaire Wagner, Adeline Hillier, Navid C. Constantinou, Simone Silvestri, Andre Souza, Keaton J. Burns, Chris Hill, Jean-Michel Campin, John Marshall, Raffaele Ferrari","doi":"10.1029/2024MS004522","DOIUrl":null,"url":null,"abstract":"<p>We describe CATKE, a parameterization for fluxes associated with small-scale or “microscale” ocean turbulent mixing on scales between 1 and 100 m. CATKE uses a downgradient formulation that depends on a prognostic turbulent kinetic energy (TKE) variable and a diagnostic mixing length scale that includes a dynamic convective adjustment (CA) component. With its dynamic convective mixing length, CATKE predicts not just the depth spanned by convective plumes but also the characteristic convective mixing timescale, an important aspect of turbulent convection not captured by simpler static CA schemes. As a result, CATKE can describe the competition between convection and other processes such as shear-driven mixing and baroclinic restratification. To calibrate CATKE, we use Ensemble Kalman Inversion to minimize the error between 21 large eddy simulations (LESs) and predictions of the LES data by CATKE-parameterized single column simulations at three different vertical resolutions. We find that CATKE makes accurate predictions of both idealized and realistic LES compared to microscale turbulence parameterizations commonly used in climate models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004522","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We describe CATKE, a parameterization for fluxes associated with small-scale or “microscale” ocean turbulent mixing on scales between 1 and 100 m. CATKE uses a downgradient formulation that depends on a prognostic turbulent kinetic energy (TKE) variable and a diagnostic mixing length scale that includes a dynamic convective adjustment (CA) component. With its dynamic convective mixing length, CATKE predicts not just the depth spanned by convective plumes but also the characteristic convective mixing timescale, an important aspect of turbulent convection not captured by simpler static CA schemes. As a result, CATKE can describe the competition between convection and other processes such as shear-driven mixing and baroclinic restratification. To calibrate CATKE, we use Ensemble Kalman Inversion to minimize the error between 21 large eddy simulations (LESs) and predictions of the LES data by CATKE-parameterized single column simulations at three different vertical resolutions. We find that CATKE makes accurate predictions of both idealized and realistic LES compared to microscale turbulence parameterizations commonly used in climate models.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.