Simone Silvestri, Gregory L. Wagner, Navid C. Constantinou, Christopher N. Hill, Jean-Michel Campin, Andre N. Souza, Siddhartha Bishnu, Valentin Churavy, John Marshall, Raffaele Ferrari
{"title":"基于gpu的海洋动力核用于常规中尺度气候模拟","authors":"Simone Silvestri, Gregory L. Wagner, Navid C. Constantinou, Christopher N. Hill, Jean-Michel Campin, Andre N. Souza, Siddhartha Bishnu, Valentin Churavy, John Marshall, Raffaele Ferrari","doi":"10.1029/2024MS004465","DOIUrl":null,"url":null,"abstract":"<p>We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004465","citationCount":"0","resultStr":"{\"title\":\"A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations\",\"authors\":\"Simone Silvestri, Gregory L. Wagner, Navid C. Constantinou, Christopher N. Hill, Jean-Michel Campin, Andre N. Souza, Siddhartha Bishnu, Valentin Churavy, John Marshall, Raffaele Ferrari\",\"doi\":\"10.1029/2024MS004465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004465\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004465\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004465","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations
We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.