基于gpu的海洋动力核用于常规中尺度气候模拟

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Simone Silvestri, Gregory L. Wagner, Navid C. Constantinou, Christopher N. Hill, Jean-Michel Campin, Andre N. Souza, Siddhartha Bishnu, Valentin Churavy, John Marshall, Raffaele Ferrari
{"title":"基于gpu的海洋动力核用于常规中尺度气候模拟","authors":"Simone Silvestri,&nbsp;Gregory L. Wagner,&nbsp;Navid C. Constantinou,&nbsp;Christopher N. Hill,&nbsp;Jean-Michel Campin,&nbsp;Andre N. Souza,&nbsp;Siddhartha Bishnu,&nbsp;Valentin Churavy,&nbsp;John Marshall,&nbsp;Raffaele Ferrari","doi":"10.1029/2024MS004465","DOIUrl":null,"url":null,"abstract":"<p>We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004465","citationCount":"0","resultStr":"{\"title\":\"A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations\",\"authors\":\"Simone Silvestri,&nbsp;Gregory L. Wagner,&nbsp;Navid C. Constantinou,&nbsp;Christopher N. Hill,&nbsp;Jean-Michel Campin,&nbsp;Andre N. Souza,&nbsp;Siddhartha Bishnu,&nbsp;Valentin Churavy,&nbsp;John Marshall,&nbsp;Raffaele Ferrari\",\"doi\":\"10.1029/2024MS004465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004465\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004465\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004465","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一个在 Oceananigans 中实现的海洋流体静力学动力学核心,该核心针对图形处理器(GPU)架构进行了优化。在 64 个 A100 GPU(相当于目前最先进的超级计算机的 16 个计算节点)上,我们的动力学核心可以在 8 千米水平分辨率下,每壁钟日模拟十年的近全球海洋动力学;这一分辨率足以解析海洋的中尺度涡场。这样的效率是在硬件资源相对有限的情况下实现的,这表明在 GPU 上进行的气候模拟可以包含完全解析涡场的海洋模型。这消除了当前 IPCC 耦合模型预测中系统偏差的一个主要来源--海洋涡的参数化,是气候建模的一大进步。我们讨论了计算策略,重点是实现如此高性能的 GPU 特定优化和数值实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations

A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations

We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 16 computational nodes in current state-of-the-art supercomputers, our dynamical core can simulate a decade of near-global ocean dynamics per wall-clock day at an 8-km horizontal resolution; a resolution adequate to resolve the ocean's mesoscale eddy field. Such efficiency, achieved with relatively modest hardware resources, suggests that climate simulations on GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of systematic bias in current IPCC coupled model projections, the parameterization of ocean eddies, and represents a major advance in climate modeling. We discuss the computational strategies, focusing on GPU-specific optimization and numerical implementation details that enable such high performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信