Takaya Uchida, 内田貴也, Quentin Jamet, Andrew C. Poje, Nicolas Wienders, Luolin Sun, 孙洛琳, William K. Dewar
{"title":"Dynamics and Thermodynamics of the Boussinesq North Atlantic Eddy Kinetic Energy Spectral Budget","authors":"Takaya Uchida, 内田貴也, Quentin Jamet, Andrew C. Poje, Nicolas Wienders, Luolin Sun, 孙洛琳, William K. Dewar","doi":"10.1029/2024MS004781","DOIUrl":null,"url":null,"abstract":"<p>Statistical characterization of oceanic flows has been a long standing issue; such information is invaluable for formulating hypotheses and testing them. It also allows us to understand the energy pathways within the ocean, which is highly turbulent. Here, we apply the wavelet approach to wavenumber spectral analysis, which has recently been proved to be beneficial in quantifying the spatially heterogeneous and anisotropic nature of oceanic flows. Utilizing an eddy-rich ensemble simulation of the North Atlantic, we are able to examine the spectral transfers of eddy kinetic energy (EKE) and effect of potential energy, here defined via dynamic enthalpy, on the EKE spectral budget. We find that vertical advection of EKE modulates the up- and down-scale direction and strength of EKE spectral flux throughout the North Atlantic domain. The vertical eddy buoyancy flux tends to be small below the mixed layer, suggesting that the flow is largely adiabatic. In maintaining this adiabatic nature, the eddy advection of dynamic enthalpy and practical salinity tend to partially compensate for the eddy advection of potential temperature; this partial cancellation between temperature and salinity is similar to the thermodynamic spice variable.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004781","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004781","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical characterization of oceanic flows has been a long standing issue; such information is invaluable for formulating hypotheses and testing them. It also allows us to understand the energy pathways within the ocean, which is highly turbulent. Here, we apply the wavelet approach to wavenumber spectral analysis, which has recently been proved to be beneficial in quantifying the spatially heterogeneous and anisotropic nature of oceanic flows. Utilizing an eddy-rich ensemble simulation of the North Atlantic, we are able to examine the spectral transfers of eddy kinetic energy (EKE) and effect of potential energy, here defined via dynamic enthalpy, on the EKE spectral budget. We find that vertical advection of EKE modulates the up- and down-scale direction and strength of EKE spectral flux throughout the North Atlantic domain. The vertical eddy buoyancy flux tends to be small below the mixed layer, suggesting that the flow is largely adiabatic. In maintaining this adiabatic nature, the eddy advection of dynamic enthalpy and practical salinity tend to partially compensate for the eddy advection of potential temperature; this partial cancellation between temperature and salinity is similar to the thermodynamic spice variable.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.