Koki Okuno, Naoki Okada, Kosuke Iwaide, Nobuhiko Ozaki
{"title":"In segregation influence on properties of InAs quantum dots in dots-in-a-well","authors":"Koki Okuno, Naoki Okada, Kosuke Iwaide, Nobuhiko Ozaki","doi":"10.35848/1347-4065/ad3f5b","DOIUrl":"https://doi.org/10.35848/1347-4065/ad3f5b","url":null,"abstract":"We investigated the growth of InAs quantum dots (QDs) in a dots-in-a-well (DWELL) from the perspective of the influence of In segregation from the InGaAs layers in the DWELL. Reflection high-energy electron diffraction (RHEED) measurements during the growth of the lower InGaAs layer indicated that In segregation increased with the In composition of the InGaAs layer. The estimated In segregation values were consistent with the decreases in the critical thickness for the QDs growth and the total volume variations of the grown QDs. These results illustrate that the segregated In from the lower InGaAs layer contributes to the QD growth in the DWELL, and their density increases. Furthermore, RHEED measurements during the growth of the upper InGaAs layer indicated the suppression of the deformation of embedded QDs , which could partially contribute to the longer emission wavelength of the QDs in the DWELL.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of columnar BiFeO3 thick films prepared by magnetic field-assisted pulsed laser deposition","authors":"J. M. Park, M. Okuyama","doi":"10.35848/1347-4065/ad3ab9","DOIUrl":"https://doi.org/10.35848/1347-4065/ad3ab9","url":null,"abstract":"Polycrystalline BiFeO<sub>3</sub> thick films were prepared on Pt/TiO<sub>2</sub>/SiO<sub>2</sub>/Si substates by using magnetic field-assisted pulsed laser deposition. Columnar BiFeO<sub>3</sub> thick films were successfully obtained with a thickness of 1.8 <italic toggle=\"yes\">μ</italic>m, owing to an oblique incoming flux and high deposition rate by the confinement of the plume under a magnetic field. In the columnar BiFeO<sub>3</sub> thick films, a saturated <italic toggle=\"yes\">P-E</italic> hysteresis loop was obtained at RT, and the remanent polarization (<italic toggle=\"yes\">P</italic>\u0000<sub>\u0000<italic toggle=\"yes\">r</italic>\u0000</sub>) and coercive field (<italic toggle=\"yes\">E</italic>\u0000<sub>\u0000<italic toggle=\"yes\">c</italic>\u0000</sub>) were 42 <italic toggle=\"yes\">μ</italic>C cm<sup>−2</sup> and 380 kV cm<sup>−1</sup>, respectively. Also, the piezoelectric response measured by atomic force microscopy showed a butterfly-shaped curve, and the piezoelectric <italic toggle=\"yes\">d</italic>\u0000<sub>33</sub> coefficient was about 50 pm V<sup>−1</sup>.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenichi Watanabe, Yuya Oshima, Nobuhiro Shigyo and Yuho Hirata
{"title":"Evaluation of quenching characteristics of Li-containing scintillators","authors":"Kenichi Watanabe, Yuya Oshima, Nobuhiro Shigyo and Yuho Hirata","doi":"10.35848/1347-4065/ad39bd","DOIUrl":"https://doi.org/10.35848/1347-4065/ad39bd","url":null,"abstract":"The quenching effect is a phenomenon in which the scintillation efficiency decreases when energetic particles with high linear energy transfer, such as high-energy ions, deposit energy within the scintillator. From the viewpoint of discriminating between neutrons and gamma rays in the neutron scintillator, evaluating the quenching effect is crucial because the high-energy ions produced by neutron reactions are used to detect neutrons. Using the user-defined subroutine in the Monte Carlo simulation code PHITS, we demonstrated the calculation of the pulse height spectra obtained from Li-containing scintillators, in which the quenching effect is considered based on the Birks’ formula. By comparing the experimental pulse height spectra with simulation results, which consider the experimental broadening, for the neutron peak and Compton edge formed by mono-energetic gamma rays, we determined the quenching coefficient in the Birks’ formula for Li glass, Ce:LiCaAlF6 and Eu:LiCaAlF6 scintillators.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noah Austin-Bingamon, Binod D. C., Yoichi Miyahara
{"title":"Control of quality factor of atomic force microscopy cantilever by cavity optomechanical effect","authors":"Noah Austin-Bingamon, Binod D. C., Yoichi Miyahara","doi":"10.35848/1347-4065/ad39f6","DOIUrl":"https://doi.org/10.35848/1347-4065/ad39f6","url":null,"abstract":"The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryo Takei, Masashi Suzuki, S. Kakio, Yasushi Yamamoto
{"title":"Analysis of propagation and resonance properties of longitudinal leaky surface acoustic wave on LiNbO3/SiC bonded structure","authors":"Ryo Takei, Masashi Suzuki, S. Kakio, Yasushi Yamamoto","doi":"10.35848/1347-4065/ad4363","DOIUrl":"https://doi.org/10.35848/1347-4065/ad4363","url":null,"abstract":"\u0000 The propagation and resonance properties of longitudinal leaky surface acoustic waves (LLSAW) on a bonded structure comprising an X-cut LiNbO3 (LN) thin plate and a 4H-SiC support substrate are theoretically investigated. The strong LLSAW responses with high Q factors were obtained at the LN thin-plate thickness h where the LLSAW phase velocity was slower than the bulk shear wave of 4H-SiC of 7126 m/s, and a fractional bandwidth (FBW) of 9–10% was obtained for the normalized Al film thickness by wavelength h\u0000 Al/λ = 0.06–0.07 and h/λ = 0.30–0.40. Moreover, even at h/λ with a faster phase velocity than the bulk shear wave of 4H-SiC, the strong LLSAW responses without spurious response owing to the LLSAW higher-order mode were obtained. Finally, h\u0000 Al/λ = 0.031 and h/λ = 0.19 were extracted to obtain a phase velocity of 7800 m/s, high Q factors, and FBW of 7.6%.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Level assessment of 87Rb in rubidium-filled MEMS vapor cells by X-ray imaging for atomic magnetometers","authors":"Minwei Jiang, Jian Wang, Hao Zhai, Chen Chen, Qi Zhang, Dongmin Wu, Baoshun Zhang, Zhongming Zeng, Jie Lin, Yiqun Wang, Chunyu Jiang, Peng Jin","doi":"10.35848/1347-4065/ad43ce","DOIUrl":"https://doi.org/10.35848/1347-4065/ad43ce","url":null,"abstract":"\u0000 Quantitative assessments of the level and lifetime of alkali metal in the atomic vapor cells are essential for improving the stability of atomic magnetometers. In this paper, a fast and non-destructive approach is proposed to directly characterize the level of 87Rb in a hermetic MEMS vapor cell. The MEMS-compatible 87Rb evaporation technique is developed to dispense 87Rb in the vapor cells with high efficiency. The morphology of the metallic 87Rb in the MEMS vapor cell is visualized by the non-destructive X-ray technique, and the measured contact angle is 43° ± 2°. Combined with the image recognition, the quantitative characterization of the 87Rb is achieved, and the consumption rates of 87Rb in MEMS cells are experimentally investigated. The presented approach is beneficial for the fabrication and performance enhancement of vapor cells for atomic magnetometers.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinwei Zhang, Qianshu Wu, Zhuoran Luo, Miao Zhang and Yang Liu
{"title":"Alleviation of the on-state dynamic conductance decline in a GaN high electron mobility transistor with heavy carbon doping","authors":"Jinwei Zhang, Qianshu Wu, Zhuoran Luo, Miao Zhang and Yang Liu","doi":"10.35848/1347-4065/ad32e8","DOIUrl":"https://doi.org/10.35848/1347-4065/ad32e8","url":null,"abstract":"Carbon doping is a standard blocking-voltage-enhancing technique for commercial silicon substrate-based AlGaN/GaN power switching transistors, although the incorporation of carbon into GaN may deteriorate the dynamic on-state resistance (dy-Ron) properties of the device. Commonly, researchers have believed that the greater the carbon doping, the greater the deterioration in dy-Ron. Surprisingly, in this work, the opposite was observed: the dy-Ron value decreased as the carbon concentration increased, particularly when the density exceeded several 1017 cm−3. This phenomenon is explained by the effect of electric field-induced band-to-band electron tunneling into the two-dimensional electron gas (2DEG) conduction channel, originating from the ionization of acceptor-like nitrogen site carbon atoms (CN) in the device off-state with large drain bias. Simulation data indicated that negatively ionized CN may generate a much larger electric field in samples with higher carbon doping, which may induce a narrower 2DEG back energy band barrier that increases the possibility of electron band-to-band tunneling.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kotaro Kuwahara, Takeaki Kitawaki, Masahiro Hara, M. Kaneko, Tsunenobu Kimoto
{"title":"Formation of ohmic contacts on heavily Al+-implanted p-type SiC without alloying process","authors":"Kotaro Kuwahara, Takeaki Kitawaki, Masahiro Hara, M. Kaneko, Tsunenobu Kimoto","doi":"10.35848/1347-4065/ad43cf","DOIUrl":"https://doi.org/10.35848/1347-4065/ad43cf","url":null,"abstract":"\u0000 Current–voltage (I–V) characteristics and contact resistivity (ρ\u0000 c) of the Ni electrodes formed on heavily Al+-implanted p-type SiC without alloying process were investigated. A nearly ohmic I–V curve with ρ\u0000 c of 9.3×10–2 Ωcm2 is demonstrated for non-alloyed Ni electrodes by very high-dose Al+ implantation (3.1×1020 cm−3). The net acceptor density dependence of the experimental ρ\u0000 c can be described by a change in the contribution of direct tunneling and trap-assisted tunneling.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of optical fiber strain sensor system based on machine learning and polarization","authors":"Yao Zhao, Weiwei Duan and Lili Yuan","doi":"10.35848/1347-4065/ad39bc","DOIUrl":"https://doi.org/10.35848/1347-4065/ad39bc","url":null,"abstract":"Based on the principle that the polarization state of light propagating in a single-mode fiber changes with external strains, an optical fiber sensor system based on machine learning and polarization for multi-point strain measurement is proposed. To address the influence of the front sensor on the rear sensor and to minimize interference from unrelated inputs, we have employed a data processing method that constructs an individual neural network model for each sensor. This approach uses the polarization state of the reflected light of the sensors as the neural networks’ input and the sensors’ rotation angles as the output, training the designed neural networks for learning. The trained neural networks produce predicted outputs that demonstrate high consistency with the experimental data, achieving an average prediction accuracy of 99% on test data. These results validate the effectiveness of our sensor system and data processing method.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140804394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunneling magnetoresistance effect with controlled spin polarization based on Mn3ZnN","authors":"Qianqian Sun, Kang An, L. Sheng, Xinluo Zhao","doi":"10.35848/1347-4065/ad42ea","DOIUrl":"https://doi.org/10.35848/1347-4065/ad42ea","url":null,"abstract":"\u0000 Due to groundbreaking advantages, antiferromagnetic offers superior prospects for the next-generation memory devices. However, detecting their Néel vector poses great challenges. Mn3ZnN, an antiperovskite antiferromagnetic, breaks TPτ and Uτ symmetries, exhibiting k-resolved spin polarization at Fermi surface. It’s ideal for electrodes to generate tunneling magnetoresistance (TMR) effects, which hinges on electrode-barrier compatibility. Testing various insulators, we obtained 2000% TMR effects in Mn3ZnN/SrTiO3/Mn3ZnN. Additionally, applying 2% biaxial stress increased the spin polarization to 35.24% in Mn3ZnN, hinting at higher TMR potential. These findings provide valuable insights for experimental and industrial developments in the field of spintronics.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}