Superconducting Nb interconnects for Cryo-CMOS and superconducting digital logic applications

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Hideaki Numata, Noriyuki Iguchi, Masamitsu Tanaka, Koichiro Okamoto, Sadahiko Miura, Ken Uchida, Hiroki Ishikuro, Toshitsugu Sakamoto and Munehiro Tada
{"title":"Superconducting Nb interconnects for Cryo-CMOS and superconducting digital logic applications","authors":"Hideaki Numata, Noriyuki Iguchi, Masamitsu Tanaka, Koichiro Okamoto, Sadahiko Miura, Ken Uchida, Hiroki Ishikuro, Toshitsugu Sakamoto and Munehiro Tada","doi":"10.35848/1347-4065/ad37c1","DOIUrl":null,"url":null,"abstract":"A 100 nm wide superconducting niobium (Nb) interconnect was fabricated by a 300 mm wafer process for Cryo-CMOS and superconducting digital logic applications. A low pressure and long throw sputtering was adopted for the Nb deposition, resulting in good superconductivity of the 50 nm thick Nb film with a critical temperature (Tc) of 8.3 K. The interconnects had a titanium nitride (TiN)/Nb stack structure, and a double-layer hard mask was used for the dry etching process. The exposed area of Nb film was minimized to decrease the effects of plasma damage during fabrication and atmosphere. The developed 100 nm wide and 50 nm thick Nb interconnect showed good superconductivity with a Tc of 7.8 K and a critical current of 3.2 mA at 4.2 K. These results are promising for Cryo-CMOS and superconducting digital logic applications in the 4 K stage.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"87 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad37c1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A 100 nm wide superconducting niobium (Nb) interconnect was fabricated by a 300 mm wafer process for Cryo-CMOS and superconducting digital logic applications. A low pressure and long throw sputtering was adopted for the Nb deposition, resulting in good superconductivity of the 50 nm thick Nb film with a critical temperature (Tc) of 8.3 K. The interconnects had a titanium nitride (TiN)/Nb stack structure, and a double-layer hard mask was used for the dry etching process. The exposed area of Nb film was minimized to decrease the effects of plasma damage during fabrication and atmosphere. The developed 100 nm wide and 50 nm thick Nb interconnect showed good superconductivity with a Tc of 7.8 K and a critical current of 3.2 mA at 4.2 K. These results are promising for Cryo-CMOS and superconducting digital logic applications in the 4 K stage.
用于低温-CMOS 和超导数字逻辑应用的超导铌互连器件
我们采用 300 mm 晶圆工艺制造了 100 nm 宽的超导铌(Nb)互连器件,用于低温-CMOS 和超导数字逻辑应用。铌沉积采用了低压长抛溅射法,使 50 纳米厚的铌薄膜具有良好的超导性,临界温度 (Tc) 为 8.3 K。铌薄膜的暴露面积最小,以减少在制造和气氛中等离子破坏的影响。所开发的宽 100 nm、厚 50 nm 的铌互连器件显示出良好的超导性,在 4.2 K 时的 Tc 为 7.8 K,临界电流为 3.2 mA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信