Control of quality factor of atomic force microscopy cantilever by cavity optomechanical effect

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Noah Austin-Bingamon, Binod D. C., Yoichi Miyahara
{"title":"Control of quality factor of atomic force microscopy cantilever by cavity optomechanical effect","authors":"Noah Austin-Bingamon, Binod D. C., Yoichi Miyahara","doi":"10.35848/1347-4065/ad39f6","DOIUrl":null,"url":null,"abstract":"The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad39f6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.
利用空腔光机械效应控制原子力显微镜悬臂的质量因子
悬臂的有效品质因数在动态模式原子力显微镜中起着根本性的作用。在此,我们介绍一种在法布里-珀罗光学干涉仪中修改原子力显微镜悬臂质量因子的技术。实验装置使用两个独立的激光源来检测和激发悬臂的振荡。当激励激光的强度调制驱动悬臂振荡时,平均强度可用于通过光机械力修改品质因数,而无需改变光纤-悬臂腔的长度。这项技术使用户能够在不影响偏转测量灵敏度的情况下,针对不同类型的测量优化品质因数。观测到了意外的频率偏移,并将其模拟为悬臂杨氏模量的温度依赖性,通过有限元模拟进行了验证。该模型用于补偿热频移。模拟提供了光功率、温度和频移之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信