Supidcha Jirawitchalert, Samon Mitaim, Ching-Yi Chen, N. Patikarnmonthon
{"title":"Cotton Cellulose-Derived Hydrogel and Electrospun Fiber as Alternative Material for Wound Dressing Application","authors":"Supidcha Jirawitchalert, Samon Mitaim, Ching-Yi Chen, N. Patikarnmonthon","doi":"10.1155/2022/2502658","DOIUrl":"https://doi.org/10.1155/2022/2502658","url":null,"abstract":"Cotton has been recognized as a useful biomaterial over decades, and it has been widely applied in the textile industry. However, a large amount of cotton waste is generated during the manufacturing processes, but it has been considered as a low-value product. With high content of cellulose remaining in cotton waste, our study focuses on transforming cotton cellulose into a valuable product. Cellulose was extracted from cotton waste and modified into two main materials for wound dressing application: hydrogel-based water absorbent materials and electrospun composite nanofibers. In order to enhance the water absorption, carboxymethyl cellulose (CMC), the modified cellulose with functional group prone to interact with water molecules, has been developed in this study. The hydrogel-based CMC was created by using the chemical cross-linking reaction of epichlorohydrin (ECH). The hydrogel demonstrated the swelling and reswelling ability by 1718 ± 137% and 97.95 ± 9.76%, respectively. Meanwhile, cellulose/PEG in trifluoroacetic acid (TFA) was successfully fabricated as nonwoven composite by a conventional electrospinning technique. The fabrics provided highly appropriated properties as wound dressing, including the following: water absorption was up to 1300 times and water vapor permeability controlled in the range of 2163–2285 g·m−2·day−1. This showed the preliminary information for recovering cotton waste into valuable products.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43923935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Evaluation of the Radiopacity of Contemporary Restorative CAD/CAM Blocks Using Digital Radiography Based on the Impact of Material Composition","authors":"N. Elhelbawy, Rehab F Ghouraba, Fatma A Hasaneen","doi":"10.1155/2022/4131176","DOIUrl":"https://doi.org/10.1155/2022/4131176","url":null,"abstract":"Purpose The main purpose of this study was to assess the radiopacity of contemporary restorative computer-aided design (CAD)/computer-aided manufacturing (CAM) materials and the impact of material composition as measured by energy-dispersive X-ray spectrophotometry (EDX) on radiopacity. Materials and Methods Ten specimens of six CAD/CAM materials with 1 mm thickness were produced and then digitally radiographed with an aluminum (Al) step-wedge (SW) and 1 mm thick tooth slice. The specimen mean gray values (MGVs) were recorded in pixels and compared to an Al-SW, dentin, and enamel of equal thickness. For the elementary analysis of the composition of the materials, EDX was performed. Results The recorded MGVs ranged between 21.20 ± 4.94 and 238.5 ± 13.61 pixels. Materials were sorted according to the MGVs descendingly, Prettau, Vita Suprinity, Vita Enamic, Shofu, Pekkton, and BioHPP. Prettau and Vita Suprinity had significantly higher MGV than dentin and 1 mm thick Al. In comparison, Vita Enamic had a slightly higher value than dentin and 1 mm thick Al. Although Pekkton and BioHPP had MGV significantly lower than dentin and 1 mm thick Al, Shofu had a significantly lower value than dentin and nonsignificantly lower than 1 mm thick Al (p < 0.05). According to EDX analysis, the examined materials contained several components in varying quantities of radiopacity. Conclusions The radiopacity of only three studied materials exceeded the International Organization for Standardization's minimum standards (ISO).","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64777327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simara Laboy-López, Pedro O Méndez Fernández, Jorge G Padilla-Zayas, Eduardo Nicolau
{"title":"Bioactive Cellulose Acetate Electrospun Mats as Scaffolds for Bone Tissue Regeneration.","authors":"Simara Laboy-López, Pedro O Méndez Fernández, Jorge G Padilla-Zayas, Eduardo Nicolau","doi":"10.1155/2022/3255039","DOIUrl":"10.1155/2022/3255039","url":null,"abstract":"<p><p>In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"3255039"},"PeriodicalIF":3.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neveen Ali Shaheen, Nahla Gamaleldin Elhelbawy, Dalia Abdelhamid Sherif
{"title":"Quantitative Assessment of Apically Extruded Debris after Single-Files Supplemental Retreatment considering Apical Patency Influence: <i>In Vitro Study</i>.","authors":"Neveen Ali Shaheen, Nahla Gamaleldin Elhelbawy, Dalia Abdelhamid Sherif","doi":"10.1155/2022/7544813","DOIUrl":"https://doi.org/10.1155/2022/7544813","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to assess the impact of re-establishing apical patency on the quantity of debris extruded through the apex after three supplementary retreatment files (TruNatomy (TRN), WaveOne Gold (WOG), and XP endo Finisher R (XPFR)).</p><p><strong>Materials and methods: </strong>Eighty single-rooted mandibular premolars were prepared with ProTaper Universal rotary systems (PTU) up to F3 and obturated. The samples were divided into two main groups according to the presence or absence of the apical patency (<i>n</i> = 40), GI with apical patency and GII without apical patency. Based on the file system, which was adopted to eliminate the previous filling, each group had four subgroups (<i>n</i> = 10). In GI PTUR and GII PTUR, ProTaper Universal retreatment files (PTUR) were utilized only to remove the most primary filling material (control groups). In the other groups (PTUR) used, it was first followed by supplementary files. The quantity of debris extruded by different retreatment file systems was determined and compared to the corresponding control group with or without apical patency. Data were analyzed using a two-way ANOVA with a post hoc Tukey's multiple comparison test at a 5% significance level.</p><p><strong>Results: </strong>There was a statistically significant difference among the control and experimental groups. XPFR had the least quantity of extruded debris. Apical patency did not affect the debris extrusion.</p><p><strong>Conclusion: </strong>All tested files led to a significant apical debris extrusion regardless of apical patency.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"7544813"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10816933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects.","authors":"Bharti Sharma, Sudeep Shukla, Rohit Rattan, Musarrat Fatima, Mayurika Goel, Mamta Bhat, Shruti Dutta, Rakesh Kumar Ranjan, Mamta Sharma","doi":"10.1155/2022/6819080","DOIUrl":"https://doi.org/10.1155/2022/6819080","url":null,"abstract":"<p><p>The rise in antimicrobial resistance is a cause of serious concern since the ages. Therefore, a dire need to explore new antimicrobial entities that can combat against the increasing threat of antibiotic resistance is realized. Studies have shown that the activity of the strongest antibiotics has reduced drastically against many microbes such as microfungi and bacteria (Gram-positive and Gram-negative). A ray of hope, however, was witnessed in early 1940s with the development of new drug discovery and use of metal complexes as antibiotics. Many new metal-based drugs were developed from the metal complexes which are potentially active against a number of ailments such as cancer, malaria, and neurodegenerative diseases. Therefore, this review is an attempt to describe the present scenario and future development of metal complexes as antibiotics against wide array of microbes.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"6819080"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10460746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microleakage Evaluation of Two Methacrylate-Based Composites (GC Kalore and Luna SDI) in Class II Restorations: A Laboratory Study.","authors":"Kooshan Moradi, Sadaf Sadat Mahmoudinezhad, Mehran Mapar","doi":"10.1155/2022/3835694","DOIUrl":"https://doi.org/10.1155/2022/3835694","url":null,"abstract":"<p><strong>Objective: </strong>In recent years, dental composite resins such as tooth-colored restoration are frequently used to restore dental cavities, coronal fractures, and congenital defects. This study aimed to evaluate the microleakage of two methacrylate-based composites (GC Kalore and Luna SDI) in class II restorations.</p><p><strong>Materials and methods: </strong>In this experimental study, a total of 18 intact human premolars previously extracted for periodontal and orthodontic reasons were randomly divided into two groups. Similar class II cavities (box only) were prepared on all teeth and restored with two different composites. In group 1, a bonding agent (Single Bond 2-SB2; 3M ESPE) and Luna SDI composite in mesial cavities and GC Kalore composite in distal cavities were used. In group 2, Single Bond 2 and GC Kalore composite in mesial cavities and Luna SDI composite in distal cavities were applied. They were then subjected to 2000 thermal cycles in a water bath between 5-55°C (dwell time: 30 seconds in every bath and transfer time: 10 seconds). Then, they were immersed in a 2% basic fuchsin dye solution for 24 hours. After rinsing with water, they were sectioned mesiodistally and evaluated for microleakage using a stereomicroscope.</p><p><strong>Results: </strong>Independent <i>t</i>-test (Mann-Whitney test) showed no statistically significant difference for microleakage in mesial and distal class II restorations between GC Kalore composite and Luna SDI composite (<i>p</i> = 1.000) (<i>p</i>= 0.852). A total of 83.4% of the Luna SDI composite samples and 66.6% of the GC Kalore composite had a microleakage score of ≤3 in class II cavities.</p><p><strong>Conclusion: </strong>In the present study, marginal microleakage was found mainly at the gingival floor extending to 1/3 of the axial wall for the Luna SDI composite and GC Kalore composite. Furthermore, no statistically significant difference was found between the microleakage of the Class II cavities restored with Luna SDI composite and GC Kalore composite.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"3835694"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10280571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Analysis of the Efficiency of Medicinal Plants for the Treatment and Prevention of COVID-19.","authors":"Viktor Kamkin, Aidana Kamarova, Baurzhan Shalabayev, Assyltas Kussainov, Marat Anuarbekov, Serik Abeuov","doi":"10.1155/2022/5943649","DOIUrl":"https://doi.org/10.1155/2022/5943649","url":null,"abstract":"<p><p>The COVID-19 pandemic has once again prompted people to resort to the remedies of folk and alternative medicine. Medicinal plants, because of their chemical composition, pharmacological properties, and the action of biologically active substances, can stop and relieve the symptoms of the disease. The purpose of the work is a comparative flora analysis of medicinal plants to identify the most prospective plant and further production of a remedy for the avoidance, treatment, and rehabilitation of COVID-19. The search for prospective medicinal plants was performed by analyzing the literature in online databases: Web of Science, Scopus, Google Scholar, and PubMed, including official WHO media sites. According to recent studies related to COVID-19, a significant number of medicinal plants with anti-inflammatory, antiviral, and immunostimulatory effects have been identified. A comparative study of nine medicinal plants was conducted to determine the most suitable medicinal plant to treat coronavirus infection. According to the results of the comparative analysis, <i>Chamaenerion angustifolium</i> Seg. showed itself as the most prospective medicinal plant with the greatest pharmacological effect compared with other types of medicinal plants. Its therapeutic properties allow physiological relief of 18 symptoms of coronavirus infection. It is advisable to conduct further clinical trials for the treatment and rehabilitation of COVID-19 using preparations from this plant.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"5943649"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10751291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Pandunugrahadi, Komang Agung Irianto, Oen Sindrawati
{"title":"The Optimal Timing of Platelet-Rich Plasma (PRP) Injection for Nerve Lesion Recovery: A Preliminary Study.","authors":"Muhammad Pandunugrahadi, Komang Agung Irianto, Oen Sindrawati","doi":"10.1155/2022/9601547","DOIUrl":"https://doi.org/10.1155/2022/9601547","url":null,"abstract":"<p><strong>Introduction: </strong>Without appropriate treatment, nerve injuries may result in permanent loss of function. Platelet-rich plasma (PRP) injection is found to help in nerve regeneration. PRP is a concentrated platelet derived from autologous blood with the potential to release various growth factors (GF) to promote nerve regeneration. This study aims to know the best time for PRP injection to promote nerve regeneration.</p><p><strong>Methods: </strong>This is an experimental in vivo research using male New Zealand white rabbits in the randomized control group posttest only design. Samples were divided into 5 groups (1 control group and 4 treatment groups). The control group without PRP injection and treated groups injected immediately after nerve injury, 3 days, 7 days, and 14 days afterward. Nerve regeneration was evaluated by the histology specimen sacrificed on day 21. Inflammation cells and endoneurium vacuoles were counted as mean percentage of five nerve fragments in each injured nerve sample specimen.</p><p><strong>Result: </strong>Inflammation cells and vacuole cells increased significantly when PRP was administered 3 days after injury (group 2) (respectively, 14 ± 6.7 and 56.6 ± 11.6) compared to all treatment groups (<i>p</i> < 0.005) (control group, respectively, 6 ± 2.6 and 15.7 ± 9.5). On the other hand, significantly lower endoneurium vacuoles and inflammation cells were found on \"the day 14\" sample group (respectively, 5 ± 1.3 and 5.2 ± 1.6) compared to all other groups (<i>p</i> < 0.005).</p><p><strong>Conclusion: </strong>This study found that the best time for injecting PRP for nerve regeneration is 14 days after injury.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"9601547"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izabelle de Mello Gindri, Lucas Kuth de Azambuja, Michele da Silva Barreto, Dionatha José do Prado, Gean Vitor Salmoria, Carlos Rodrigo de Mello Roesler
{"title":"Influence of Breast Implant Surface Finishing on Physicochemical and Mechanical Properties before and after Extreme Degradation Studies.","authors":"Izabelle de Mello Gindri, Lucas Kuth de Azambuja, Michele da Silva Barreto, Dionatha José do Prado, Gean Vitor Salmoria, Carlos Rodrigo de Mello Roesler","doi":"10.1155/2021/8850577","DOIUrl":"10.1155/2021/8850577","url":null,"abstract":"<p><p>The influence of the surface finishing of breast implants on physicochemical and mechanical properties, before and after extreme degradation experiments, was investigated in this study. Removal of superficial layers after degradation was verified for both smooth and rough membranes, in which local erosion was verified. FTIR results demonstrated the generation of low-molecular-weight structures in all samples due to exposure to acidic and basic environments. Furthermore, smooth samples presented higher degrees of crosslinking than rough samples. Considering the mechanical properties, no difference was verified between smooth and rough samples as received and after degradation studies. However, the pH of the degradation solution had an influence on mechanical properties of the material and a basic environment caused greater deterioration of the mechanical properties compared to acidic conditions.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2021 ","pages":"8850577"},"PeriodicalIF":3.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8261180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10436951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernard Owusu Asimeng, Emmanuel Nyankson, Johnson Kwame Efavi, Amartey Nii Amarkai, Gloria Pokuaa Manu, Elvis Tiburu
{"title":"Characterization and Inhibitory Effects of Magnetic Iron Oxide Nanoparticles Synthesized from Plant Extracts on HeLa Cells.","authors":"Bernard Owusu Asimeng, Emmanuel Nyankson, Johnson Kwame Efavi, Amartey Nii Amarkai, Gloria Pokuaa Manu, Elvis Tiburu","doi":"10.1155/2020/2630735","DOIUrl":"https://doi.org/10.1155/2020/2630735","url":null,"abstract":"<p><p>Magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles were synthesized from maize leaves and plantain peels extract mediators. Particles were characterized, and the inhibitory effects were studied on HeLa cells in vitro using cyclic voltammetry (CV). Voltammograms from the CV show that Fe<sub>3</sub>O<sub>4</sub> NPs interaction with HeLa cells affected their electrochemical behavior. The nanoparticles formed with higher Fe<sup>3+</sup>/Fe<sup>2+</sup> molar ratio (2.8 : 1) resulted in smaller crystallite sizes compared to those formed with lower Fe<sup>3+</sup>/Fe<sup>2+</sup> molar ratio (1.4 : 1). The particles with the smallest crystallite size showed higher anodic peak currents, whereas the larger crystallite sizes resulted in lower anodic peak currents. The peak currents relate to cell inhibition and are confirmed by the half-maximum inhibitory concentration (IC<sub>50</sub>). The findings show that the particles have a different inhibitory mechanism on HeLa cells ion transfer and are promising to be further exploited for cancer treatment.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"2630735"},"PeriodicalIF":3.1,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/2630735","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38855467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}