{"title":"Correction to \"Comparative Release of Platelet-Derived Growth Factor-AA and Evaluation of Osteoblastic Proliferation of Two Liquid Platelet-Rich Fibrin Formulations (C-PRF and I-PRF): An In Vitro Study\".","authors":"","doi":"10.1155/ijbm/9852454","DOIUrl":"https://doi.org/10.1155/ijbm/9852454","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/ijbm/3568968.].</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"9852454"},"PeriodicalIF":4.5,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145206433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swarup Roy, Athira R S Pillai, Mitali Madhumita, Riya Joshi, Wanli Zhang, Shiv Shankar
{"title":"A Comprehensive Review on Recent Advances in Plant Flour-Based Edible Tableware.","authors":"Swarup Roy, Athira R S Pillai, Mitali Madhumita, Riya Joshi, Wanli Zhang, Shiv Shankar","doi":"10.1155/ijbm/6206991","DOIUrl":"10.1155/ijbm/6206991","url":null,"abstract":"<p><p>Nowadays, plastic has become an integral part of our daily used products. Packaging is the sector where a significant portion of plastics are being used, and it has increased many folds after the recent pandemic. The plastic-based cutlery, cups, bowls, and plates have been commonly used in ready-to-eat packaged food, and they include mostly single-use plastic; thus, there is an urgent need for substitution with eco-friendly alternatives. The edible cups, bowls, and cutlery could be a promising alternative to the plastic counterparts. This review debated the current scenario in edible cutlery fabrication and characterization. The plant-based, eco-friendly edible flour materials are commonly used for fabricating edible cutlery such as bowls, cups, and spoons. The fortification and enrichment of additives into the edible cutlery and tableware were promising to improve the physical and functional performance. To develop edible cutlery, various flours such as millet, wheat, and rice have already been explored, and the results are promising for attaining sustainable development. The edible spoons prepared by using various flours such as finger millet and wheat flour with ashwagandha powder showed high proximate composition, including protein 5.96% and carbohydrates 85.73%. Similarly, the edible cutlery prepared using rice flour, wheat flour, and banana blossom powder resulted in a high water absorption capacity of 31.59% and showed high biodegradable capacity and decayed in 5 days. The use of this edible tableware not only reduces plastic waste issues but also makes our food healthier and nutrition-rich. Hence, this review aims to provide an overview of edible cutlery's needs and current status.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"6206991"},"PeriodicalIF":4.5,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144845884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topical Delivery Systems for Plant-Derived Antimicrobial Agents: A Review of Current Advances.","authors":"Mohammad Hashem Hashempur, Fereshteh Ghorat, Forough Karami, Alireza Jahanbin, Hasti Nouraei, Milad Abbasi, Mahboobeh Jafari, Alireza Zare, Sajjad Barzegar, Zahra Zareshahrabadi","doi":"10.1155/ijbm/4251091","DOIUrl":"10.1155/ijbm/4251091","url":null,"abstract":"<p><p>Plant-derived compounds have attracted considerable attention in the field of antimicrobial therapy. This interest is primarily due to their natural origin and historical evidence of their use in traditional medicine systems. These derivatives are a rich reservoir of chemical diversity that has a promising potential for the development and production of new antimicrobial agents with the least amount of side effects and risks of drug resistance. However, the delivery of plant-derived antimicrobial agents, especially through the topical route, poses significant challenges. As the largest organ of the body, the skin acts as a first barrier against the entrance of microbial pathogens. A primary limitation to transdermal delivery of plant-derived antimicrobial agents is their complex molecular structures, which often prevent effective absorption through the skin. Therefore, developing and promoting an effective local drug delivery system to increase the potential of antimicrobial therapy is very important and effective in public health. This review discusses delivery strategies for plant-derived antimicrobial agents aimed at the bioavailability and stability of these compounds as well as their mode of action, ensuring targeted delivery to the site of infection with long-lasting effects and minimizing side effects. Besides, various topical drug delivery platforms are analyzed, including nanoparticles, liposomes, and innovative application methods such as microneedles.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"4251091"},"PeriodicalIF":4.5,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144775286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ansu Sara Eapen, Yuvraj Khasherao Bhosale, Swarup Roy
{"title":"A Review on Novel Techniques Used for Drying Medicinal Plants and Its Applications.","authors":"Ansu Sara Eapen, Yuvraj Khasherao Bhosale, Swarup Roy","doi":"10.1155/ijbm/4533070","DOIUrl":"10.1155/ijbm/4533070","url":null,"abstract":"<p><p>The drying of medicinal plants is a crucial step in their processing since it preserves the active ingredients and increases their shelf life. Traditional drying methods often exhibit limitations such as extended drying time, loss of bioactive components, and decreased product quality. Novel drying methods have recently come to light as possible alternatives for drying medicinal plants. Reduced drying time, greater bioactive ingredient preservation, and improved product quality are just a few benefits of these novel methods. The bioactive components of medicinal plants can be preserved using these modern drying methods, which also provide possibilities for improved processing efficiency, less energy utilization, and increased product stability. However, while choosing a drying method, it is important to take into account the distinctive features of the medicinal plant, the desired quality attributes, and the economic feasibility. This review gives an overview of novel techniques such as microwave drying, vacuum drying, freeze drying, refractance window drying, Osmo drying, supercritical CO<sub>2</sub> drying, and spray drying for drying medicinal plants and some potential applications.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"4533070"},"PeriodicalIF":3.0,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144659141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernesto Ibarra-Ramírez, Melissa Montes, Roger Alexei Urrutia, Diego Reginensi, Edwin A Segura González, Luis Estrada-Petrocelli, Alexandra Gutierrez-Vega, Abhishek Appaji, Jay Molino
{"title":"Metallic Nanoparticles Applications in Neurological Disorders: A Review.","authors":"Ernesto Ibarra-Ramírez, Melissa Montes, Roger Alexei Urrutia, Diego Reginensi, Edwin A Segura González, Luis Estrada-Petrocelli, Alexandra Gutierrez-Vega, Abhishek Appaji, Jay Molino","doi":"10.1155/ijbm/4557622","DOIUrl":"10.1155/ijbm/4557622","url":null,"abstract":"<p><p>Metallic nanoparticles (NPs) possess unique physicochemical properties that have enabled their engineering for loading drugs, contrast agents, and targeting moieties for cellular and intracellular components, highlighting their emerging role as versatile tools in managing neurological disorders. In therapeutic applications, the surface plasmon resonance characteristics of gold and silver NPs and the responsiveness of magnetic nanoparticles (MNPs) to external magnetic fields facilitate the disruption of protein aggregates and the eradication of cancer cells. For diagnostic purposes, the inherent high electron density of metallic NPs makes them effective contrast agents in imaging technologies. Moreover, these NPs have proven their capability to traverse the blood-brain barrier (BBB) and interact with central nervous system (CNS) components. Despite their extensive scientific exploration and promising applications, metallic NPs have not yet achieved widespread clinical implementation, especially in comparison to polymer-based NPs. This article presents an in-depth examination of the physicochemical properties of metallic NPs relevant to neurological applications. It summarizes their roles in diagnosis and therapy, focusing on gold, magnetic, silver, titanium, and cerium NPs. Additionally, this document explains the incorporation of metal NPs in their application and their effect on the human body.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"4557622"},"PeriodicalIF":3.0,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144636952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Shaping Ability and Apical Debris Extrusion Using 4 Different Nickel-Titanium Single-File Systems.","authors":"Siyu Li, Mengzhen Tang, Xi Wang, Jian Yang","doi":"10.1155/ijbm/2161833","DOIUrl":"10.1155/ijbm/2161833","url":null,"abstract":"<p><p><b>Background:</b> This study compared the shaping ability and apical debris extrusion of four nickel-titanium (Ni-Ti) single-file systems in simulated curved root canals. <b>Methods:</b> Forty simulated curved root canals in resin blocks were randomly assigned to four groups (<i>n</i> = 10): Reciproc Blue (RCB), V-Blue, One Plex, and S-ONE. Images of the simulated root canals were captured before and after instrumentation. The two layers were processed and superimposed using specialized software. Eleven points (Levels 0-10) were selected at 1-mm intervals starting from the apex for evaluation. The amount of resin removed from both the inner (X1) and outer sides (X2) of the root canal, as well as the final canal width (Y), were measured. The centering ratio was calculated using the formula (X1 - X2)/Y to assess the centering ability of the instruments. Apically extruded debris was collected during the root preparation. <b>Results:</b> The preparation times for the root canal were as follows: One Plex > RCB > V-Blue > S-ONE (<i>p</i> < 0.001). All four Ni-Ti files were effective in straightening the root canal, with no significant difference in curvature change (<i>p</i> > 0.05). At the apex, One Plex exhibited significantly greater deviation compared with the other three groups (<i>p</i> < 0.05). At Levels 7-8, the deviation with RCB was significantly greater than with One Plex and S-ONE (<i>p</i> < 0.01). The amount of apical debris extrusion in the One Plex group was significantly higher than that in the others (<i>p</i> < 0.01). <b>Conclusions:</b> S-ONE demonstrated the best centering ability compared with other groups. In contrast, One Plex produced the highest amount of apical debris extrusion and exhibited transportation at the apical foramen. At Levels 6-8, RCB exhibited excessive removal of the inner canal wall relative to S-ONE and One Plex.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"2161833"},"PeriodicalIF":3.0,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12253992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vilma Delgado-Morales, Lizbeth Barragán-Maldonado, Mercedes Salazar-Hernández, Alfonso Talavera-Lopez, Alba N A Ardila, Oscar Joaquín Solis-Marcial, Jose A Hernández
{"title":"Stability of Synthesized Brushite in Physiological Media for the Possible Bone-Regenerative Use.","authors":"Vilma Delgado-Morales, Lizbeth Barragán-Maldonado, Mercedes Salazar-Hernández, Alfonso Talavera-Lopez, Alba N A Ardila, Oscar Joaquín Solis-Marcial, Jose A Hernández","doi":"10.1155/ijbm/9636002","DOIUrl":"10.1155/ijbm/9636002","url":null,"abstract":"<p><p>The advancement of science and technology has helped humans solve different problems related to their health. Among these applications are biomaterials, which are materials synthesized by humans for medical or biological use, representing a market and innovation with potential. The best known biomaterials are calcium phosphate cements (CPCs) that are used as bone substitutes, which show a similarity to bone minerals such as apatites such as dicalcium phosphate dihydrate, and it was synthesized and tested in previously prepared simulated intestinal and body fluids to analyze its stability under specific physiological conditions. Purity was determined by the ash method, giving an average of 73% and 85% in the different tests carried out. The characterization study was involved using ATR-FTIR, XRD, SEM, and EDS where changes were observed in the crystalline structure, in the bonds of the functional groups present on the surface and the morphology of Brushite causing the interaction with the different simulated fluids transformation into monetite, amorphous dicalcium phosphate, and hydroxyapatite.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"9636002"},"PeriodicalIF":3.0,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144608262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud Osanloo, Sahar Fereydonpour, Abbas Abdollahi, Mojdeh Safari
{"title":"Development of Nanofiber Mats Impregnated With <i>Ferula assa-foetida</i> Essential Oil Nanogel for Antibacterial Wound Care.","authors":"Mahmoud Osanloo, Sahar Fereydonpour, Abbas Abdollahi, Mojdeh Safari","doi":"10.1155/ijbm/1436095","DOIUrl":"10.1155/ijbm/1436095","url":null,"abstract":"<p><p>Bacterial infections pose significant threats to human health, and the rising issue of antibiotic resistance necessitates exploring alternative therapeutic strategies. In this study, <i>Ferula assa-foetida</i> essential oil (EO) as an herbal medicine was first analyzed using gas chromatography-mass spectrometry (GC-MS). Polycaprolactone-gelatin nanofibers were then prepared via electrospinning. Biological efficacies (antioxidant and antibacterial properties) of nanofibers impregnated with the nanogel containing the EO were finally investigated. As a result, the five major identified compounds were ethyl trifluoromethyl disulfide (33.6%), β-pinene (15.1%), δ-3-carene (6.6%), dihydro-β-agarofuran (6.0%), and γ-eudesmol (5.5%). Nanogel was developed from a primary nanoemulsion, with a 55 ± 7 nm droplet size and a zeta potential of -31 ± 2 mV. Nanofibers with a hydrophobic surface (contact angle (<i>θ</i>) 107°) impregnated with the nanogel demonstrated remarkable antibacterial efficacy, inhibiting the growth of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> by nearly 100% and <i>Pseudomonas aeruginosa</i> by 90%. These findings suggest that the developed formulation has the potential to serve as an effective antibacterial wound dressing, warranting further investigation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"1436095"},"PeriodicalIF":3.0,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144316849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Biofunctional Monomer, the Calcium Salt of 4-Methacryloxyethyl Trimellitic Acid, Promotes Odontoblast Differentiation in Three-Dimensional Culture System.","authors":"Yaxin Rao, Youjing Qiu, Takashi Saito","doi":"10.1155/ijbm/3693662","DOIUrl":"10.1155/ijbm/3693662","url":null,"abstract":"<p><p>This study evaluated the effects of the biofunctional monomer CMET on the proliferation, differentiation, and mineralization of MDPC-23, odontoblast-like cells in a three-dimensional (3D) culture system using type I collagen. CMET (0.3%, w/v) facilitated the early adhesion and spreading of the cells in type I collagen gels. It significantly promoted cell proliferation in 0.2% and 0.3% concentrations. ALP activity also increased in the 0.3% CMET group. The 0.3% CMET group markedly enhanced odontogenic differentiation by upregulating mRNA of odontogenic differentiation markers such as DSPP and DSP-1. Mineral nodule formation in MDPC-23 cells grown in the 0.3% CMET group was markedly increased compared to that in the control group. After treating the cells with the three MAPK inhibitors, the ability of CMET to stimulate ALP activity in MDPC-23 cells was totally suppressed to control levels by the p38 inhibitor, SB202190. The enhancement of mineralization of MDPC-23 by CMET was partially impeded by SB202190. The results demonstrated that the biofunctional monomer CMET induced proliferation, differentiation, and mineralization of odontoblast-like cells in a 3D culture system using type I collagen gel at a concentration of 0.3%. Thus, combining CMET and type I collagen gel as a scaffold does not exhibit apparent cytotoxicity and is suggested to have immense potential for dentin regeneration.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"3693662"},"PeriodicalIF":3.0,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Muhammad Hasan, Saadat Hussain, Muhammad Yousuf, José Agustín Tapia-Hernández, Daim Asif Raja
{"title":"Protein-Based Silver Nanoparticles: Synthesis, Characterization, Administration, and Nanomedicine Applications.","authors":"Syed Muhammad Hasan, Saadat Hussain, Muhammad Yousuf, José Agustín Tapia-Hernández, Daim Asif Raja","doi":"10.1155/ijbm/5533798","DOIUrl":"10.1155/ijbm/5533798","url":null,"abstract":"<p><p>Nanotechnology has emerged as a transformative field in recent years, greatly impacting medicine and healthcare with innovative solutions for complex diseases. Among these advancements, protein-based metal nanoparticles have shown exceptional promise in treating chronic illnesses, owing to their high biocompatibility, biodegradability, customizable surface properties, and precise drug delivery capabilities. Recent studies have highlighted advancements in targeting efficiency and controlled release, alongside the ability of protein-based metal nanoparticles to bypass the first-pass metabolism, enhancing bioavailability through novel administration routes. Cutting-edge research has also focused on functionalizing protein nanostructures with therapeutic metal ions, particularly silver, with a longstanding antimicrobial and anti-inflammatory history. New combinations of silver with protein-based nanoparticles are now showing significant potential in managing chronic and life-threatening conditions. This review provides a comprehensive overview of the latest synthesis methods, toxicity assessments, therapeutic applications, administration pathways, and advanced characterization techniques for protein-based silver nanoparticles, addressing the evolving landscape of nanomedicine.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5533798"},"PeriodicalIF":3.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144208493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}