{"title":"Modulus of Elasticity of Two Ceramic Materials and Stress-Inducing Mechanical Deformation following Fabrication Techniques and Adhesive Cementation Procedures of a Dental Ceramic.","authors":"G Isgrò, D Rodi, A Sachs, M Hashimoto","doi":"10.1155/2019/4325845","DOIUrl":"10.1155/2019/4325845","url":null,"abstract":"<p><strong>Statement of problem: </strong>Fabrication technique, precementation, and cementation operative procedures can induce significant modification of the stressing patterns throughout the thickness of some classes of dental ceramic materials.</p><p><strong>Objectives: </strong>To estimate, by means of the deflection test, residual stress in restorative dental ceramic following fabrication technique, precementation, and resin cement coating procedures and to relate it to the elastic property of the ceramic material tested.</p><p><strong>Materials and methods: </strong>From IPS e.max® Press, lithium disilicate heat-pressed glass-ceramic (elastic modulus of 95 ± 5 GPa) disc-shaped specimens (<i>n</i> = 10) were made according to the manufacturer's instructions. One surface of the specimens was polished to provide accurate baseline profilometric measurements (reference surface). Deflection measurements were performed after polishing and annealing alumina air-particle abrasion of the unpolished surface followed by resin cement coating of the alumina air-particle abraded surface. The specimens were reprofiled at 24, 48, and 168 hrs after coating. The Friedman test followed by Dunn's multiple comparison test was employed to identify significant differences (<i>p</i> < 0.05). To compare the difference in mean of maximum mechanical deflection, after cement coating at 0 hr, between two different ceramic materials (IPS e.max Press and Vitadur Alpha (result from another study)), Student's <i>t</i>-test for unpaired data was performed.</p><p><strong>Results: </strong>Baseline profilometric measurements identified a convex form on the polished surface of the ceramic discs with a mean of maximum mechanical deflection of 4.45 ± 0.87 <i>μ</i>m. A significant reduction in convexity of the polished specimens was characterized after alumina air-particle abrasion of the unpolished surface. The mean deflection significantly increased after resin cement coating and did not change over the time investigated.</p><p><strong>Conclusions: </strong>The precementation treatment, namely, alumina air-particle abrasion and cementation procedure of IPS e.max® Press glass-ceramic disc-shaped specimens generates stress that induced mechanical deformation. However, a dental ceramic material with higher elastic modulus (stiffer) would minimize stress-inducing mechanical deformation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"4325845"},"PeriodicalIF":3.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37449209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Watcharaphong Chaemsawang, W. Prasongchean, K. Papadopoulos, G. Ritthidej, S. Sukrong, P. Wattanaarsakit
{"title":"The Effect of Okra (Abelmoschus esculentus (L.) Moench) Seed Extract on Human Cancer Cell Lines Delivered in Its Native Form and Loaded in Polymeric Micelles","authors":"Watcharaphong Chaemsawang, W. Prasongchean, K. Papadopoulos, G. Ritthidej, S. Sukrong, P. Wattanaarsakit","doi":"10.1155/2019/9404383","DOIUrl":"https://doi.org/10.1155/2019/9404383","url":null,"abstract":"Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE's observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound's isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9404383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42728319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raneem S Alofi, I. Alshiddi, Y. AlFawaz, A. Alsahhaf, K. Al-Aali, T. Abduljabbar, Fahim Vohra
{"title":"Influence of Er,Cr:YSGG Laser Irradiation on the Push-Out Bond Strength of Zirconia and Glass Fiber Posts with Radicular Dentin","authors":"Raneem S Alofi, I. Alshiddi, Y. AlFawaz, A. Alsahhaf, K. Al-Aali, T. Abduljabbar, Fahim Vohra","doi":"10.1155/2019/4869853","DOIUrl":"https://doi.org/10.1155/2019/4869853","url":null,"abstract":"Objective This in vitro study was designed to evaluate the influence of an Er,Cr:YSGG laser on the bond strength of zirconia and glass fiber posts with root dentin. Materials and methods Ninety extracted single-rooted human teeth were randomized into 6 groups (n = 15/group) on the basis of different posts (zirconia/glass fiber) and Er,Cr:YSGG laser tips (axial and radial). Specimens were prepared for push-out testing with the help of a cutting machine; six slices (2 on each cervical, middle, and apical) of approximately 1 mm thickness were sectioned for all roots on a plane perpendicular to the long axis of the post. All specimens were placed into a universal testing machine with a defined 0.5 mm/min crosshead speed until the maximum failure load was obtained. Results The highest mean push-out bond strength of the glass fiber and zirconia groups was achieved with laser treatment. The highest push-out bond strength was achieved with the axial fiber tip (7.63 ± 1.22 MPa), and the lowest was achieved with a radial fiber tip of the glass fiber group (6.98 ± 0.96 MPa). ANOVA showed a statistically significant difference between the groups (p = 0.041). The mean push-out bond strength was found to be higher with an axial fiber tip for both cervical and apical segments in the glass fiber and zirconia groups (p < 0.05). The independent t-test resulted in the overall highest mean push-out bond strength in the apical segments (p = 0.026). Conclusion Within the limits of the present in vitro research study, an enhancement in the push-out bond strength of resin cement, mainly in the cervical region of the root canal, was achieved after irradiation with an Er,Cr:YSGG laser using an axial fiber tip.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/4869853","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42668634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. B. Ahi, Nergis Zeynep Renkler, Mine Gul Seker, K. Tuzlakoglu
{"title":"Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes","authors":"Z. B. Ahi, Nergis Zeynep Renkler, Mine Gul Seker, K. Tuzlakoglu","doi":"10.1155/2019/7932470","DOIUrl":"https://doi.org/10.1155/2019/7932470","url":null,"abstract":"Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7932470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44456224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ramirez-Vazquez, I. Escobar, J. González-Rubio, E. Arribas
{"title":"Comment on “The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo”","authors":"R. Ramirez-Vazquez, I. Escobar, J. González-Rubio, E. Arribas","doi":"10.1155/2019/2593205","DOIUrl":"https://doi.org/10.1155/2019/2593205","url":null,"abstract":"We have read the work of Galli [1] “The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo”, published the 3rd of September, 2018, in International Journal of Biomaterials, and we want to comment on some values of the magnetic fields used. In this publication, the authors present a review that includes studies investigating the effects of Pulsed Electromagnetic Fields (PEMFs) on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone. In Tables 1, 2, and 3, on pages 3 and 6 to 8, the authors summarize the in vitro and in vivo studies on the effects of PEMFs stimulation on osteoblastic primary cells and cell lines on calcium phosphate biomaterials, titaniumbased biomaterials, and polymer-based biomaterials, respectively. The data of magnetic field intensity are expressed in miliTesla (mT), except the field intensity of experimental model about placement in rabbit tibias (expressed in W). This last value is not considered for having the incorrect units. We consider it interesting to do a detailed analysis of the average magnetic field used, to know their behaviour and calculate the intensity of the electromagnetic wave associated with this magnetic field. Supposing that the magnetic field is part of an electromagnetic wave, we have calculated the wave intensity of those waves using the data from Tables 1, 2 and 3, column 4, of the paper of Galli [1], obtaining the results of columns 3 and 6 (in italic font) of Table 1 (expressed in W/m). The expression we have used to calculate the intensity of the electromagnetic wave, measured in W/m, is as follows:","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2593205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47546969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryoji Sawada, Yuya Katou, Hirofumi Shibata, Max Katayama, Toru Nonami
{"title":"Evaluation of Photocatalytic and Protein Adsorption Properties of Anodized Titanium Plate Immersed in Simulated Body Fluid.","authors":"Ryoji Sawada, Yuya Katou, Hirofumi Shibata, Max Katayama, Toru Nonami","doi":"10.1155/2019/7826373","DOIUrl":"https://doi.org/10.1155/2019/7826373","url":null,"abstract":"<p><p>Titanium-based materials are widely used for implant treatments such as artificial dental roots. Surface treatment has the potential to improve not only the biocompatibility but also the chemical and mechanical durability of the surface without changing the mechanical properties of the metal. A relatively thick titanium oxide film can be formed by the anodic oxidation method. Phosphoric acid or sulfuric acid electrolytic solution has previously been used for anodic oxidation. Such anodized films have excellent film hardness, abrasion resistance, and adhesion. In this study, titanium plate was anodized using an aqueous solution of sulfuric acid in which titanium oxide powder was suspended. A 2800-nm-thick titanium oxide film was formed, which was thicker than that obtained using phosphoric acid electrolyte. The titanium plate was immersed in simulated body fluid for 1 day to evaluate the photocatalytic activity and protein adsorption ability, and a homogeneous crack-free hydroxyapatite layer was formed. This titanium plate showed high methylene blue bleaching capacity. The adsorption ability of the acidic protein of the anodized titanium plate subjected to the above treatment was high. This suggests that this titanium plate has antimicrobial properties and protein adsorption ability. Thus, we report that a titanium plate, anodized with a sulfuric acid aqueous electrolyte solution containing suspended TiO<sub>2</sub> powder and immersed in simulated body fluid, might behave as an antibacterial and highly biocompatible implant material.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"7826373"},"PeriodicalIF":3.1,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7826373","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41199837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Hikmawati, H. Maulida, A. Putra, A. S. Budiatin, A. Syahrom
{"title":"Synthesis and Characterization of Nanohydroxyapatite-Gelatin Composite with Streptomycin as Antituberculosis Injectable Bone Substitute","authors":"D. Hikmawati, H. Maulida, A. Putra, A. S. Budiatin, A. Syahrom","doi":"10.1155/2019/7179243","DOIUrl":"https://doi.org/10.1155/2019/7179243","url":null,"abstract":"The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7179243","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46547084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyung-Yun Kang, Yun-Ho Hwang, Sung-Ju Lee, Ho-Yeol Jang, Seong-Gyeol Hong, Seul-Ki Mun, Su-Jin Kim, Jong-Jin Kim, Kuyng-Wuk Park, Kyoung-Sun Seo, Seung-Eon Ban, Seong-Woo Jin, Hyuck-Joo Kim, Sung-Tae Yee
{"title":"Verification of the Functional Antioxidant Activity and Antimelanogenic Properties of Extracts of <i>Poria cocos</i> Mycelium Fermented with Freeze-Dried Plum Powder.","authors":"Kyung-Yun Kang, Yun-Ho Hwang, Sung-Ju Lee, Ho-Yeol Jang, Seong-Gyeol Hong, Seul-Ki Mun, Su-Jin Kim, Jong-Jin Kim, Kuyng-Wuk Park, Kyoung-Sun Seo, Seung-Eon Ban, Seong-Woo Jin, Hyuck-Joo Kim, Sung-Tae Yee","doi":"10.1155/2019/9283207","DOIUrl":"https://doi.org/10.1155/2019/9283207","url":null,"abstract":"<p><p>Here we examine the effects of extracts of <i>Poria cocos</i> mycelium fermented with freeze-dried plum powder (PPE) on the <i>α</i>-melanocyte stimulating hormone (<i>α</i>-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells), relative to the effects of Prunus extract. We found that an extract of Prunus fermentation showed significant inhibition of melanogenesis and tyrosinase activity with no effect on cell proliferation and was more active compared to Prunus extract alone. Furthermore, we confirmed that medium containing 3% Prunus was the optimal culture substrate for fermentation with <i>Poria cocos</i>. These results provide evidence that Prunus fermentation extract affects skin whiting in murine B16 melanoma cells (B16 cells). Prunus contains rutin, oxalic acid, succinic acid, and fumaric acid, which help in digestion and fatigue recovery. The rutin of <i>Prunus mume</i> is reported to have antioxidant and anti-inflammatory effects. Also, Prunus extract has a tyrosinase inhibitory activity for skin whiting through its antioxidant activity. Therefore, we believe the Prunus extract for <i>Poria cocos</i> fermentation can be provided as a potential mediator to induce skin whiting.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"9283207"},"PeriodicalIF":3.1,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9283207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37395799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications.","authors":"Vivian Huynh, Ngan K Ngo, Teresa D Golden","doi":"10.1155/2019/3806504","DOIUrl":"https://doi.org/10.1155/2019/3806504","url":null,"abstract":"<p><p>To improve the biocompatibility of medical implants, a chemical composition of bone-like material (e.g., hydroxyapatite) can be deposited on the surface of various substrates. When hydroxyapatite is deposited on surfaces of orthopedic implants, several parameters must be addressed including the need of rapid bone ingrowth, high mechanical stability, corrosion resistance, biocompatibility, and osseointegration induction. However, the deposition process can fail due to poor adhesion of the hydroxyapatite coating to the metallic substrate. Increasing adhesion by enhancing chemical bonding and minimizing biocoating degradation can be achieved through surface activation and pretreatment techniques. Surface activation can increase the adhesion of the biocoating to implants, providing protection in the biological environment and restricting the leaching of metal ions in vivo. This review covers the main surface activation and pretreatment techniques for substrates such as titanium and its alloys, stainless steel, magnesium alloys, and CoCrMo alloys. Alkaline, acidic, and anodizing techniques and their effects on bioapatite deposition are discussed for each of the substrates. Other chemical treatment and combination techniques are covered when used for certain materials. For titanium, the surface pretreatments improve the thickness of the TiO<sub>2</sub> passive layer, improving adhesion and bonding of the hydroxyapatite coating. To reduce corrosion and wear rates on the surface of stainless steel, different surface modifications enhance the bonding between the bioapatite coatings and the substrate. The use of surface modifications also improves the morphology of hydroxyapatite coatings on magnesium surfaces and limits the concentration of magnesium ions released into the body. Surface treatment of CoCrMo alloys also decreased the concentration of harmful ions released in vivo. The literature covered in this review is for pretreated surfaces which then undergo deposition of hydroxyapatite using electrodeposition or other wet deposition techniques and mainly limited to the years 2000-2019.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"3806504"},"PeriodicalIF":3.1,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3806504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37395797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Al<sub>2</sub>O<sub>3</sub> Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process.","authors":"Peter Schupbach, Roland Glauser, Sebastian Bauer","doi":"10.1155/2019/6318429","DOIUrl":"https://doi.org/10.1155/2019/6318429","url":null,"abstract":"<p><p>Dental implants with moderately rough surfaces show enhanced osseointegration and faster bone healing compared with machined surfaces. The sandblasting and acid-etching (SA) process is one technique to create moderately rough dental implant surfaces. The purpose of this study was to analyse different commercially available implant systems with a SA-modified surface and to explore the widespread notion that they have similar surface properties regarding morphology and cleanliness. SA-modified surfaces of nine implant systems manufactured by Alpha-Bio Tec Ltd, Camlog Biotechnologies AG, Dentsply Sirona Dental GmbH, Neoss Ltd, Osstem Implant Co. Ltd, Institute Straumann AG, and Thommen Medical AG were analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) and examined for surface cleanliness. Six implants from three different lots were selected per each implant system. Mean particle counts for each implant and the mean size of the particles were calculated from three different regions of interest and compared using ANOVA and Tukey's test. SEM analysis showed presence of particles on the majority of analyzed implant surfaces, and EDX evaluations determined that the particles were made of Al<sub>2</sub>O<sub>3</sub> and thus remnants of the blasting process. SPI®ELEMENT INICELL® and Bone Level (BL) Roxolid® SLActive® implant surfaces showed the highest mean particle counts, 46.6 and 50.3 per area, respectively. The surface of BL Roxolid® SLActive® implant also showed the highest variations in the particle counts, even in samples from the same lot. The mean size of particles was 1120±1011 <i>μ</i>m<sup>2</sup>, measured for USIII CA Fixture implants, while the biggest particle was 5900 <i>μ</i>m<sup>2</sup> found on a BL Roxolid® SLActive® implant. These results suggest that not all manufacturers are able to produce implant surfaces without particle contamination and highlight that the surface modification process with the SA technique should be appropriately designed and controlled to achieve a clean and consistent final medical device.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"6318429"},"PeriodicalIF":3.1,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6318429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37395798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}