Ana Lúcia Nascimento Oliveira, C. Elias, Heraldo Elias Salomão Dos Santos, Claudinei dos Santos, R. de Biasi
{"title":"不透明和高透光性氧化锆口腔陶瓷水热降解后的物理性能和咖啡红染色性能","authors":"Ana Lúcia Nascimento Oliveira, C. Elias, Heraldo Elias Salomão Dos Santos, Claudinei dos Santos, R. de Biasi","doi":"10.1155/2022/1571729","DOIUrl":null,"url":null,"abstract":"The objective was to evaluate the bending strength, phase transformation, roughness, and color stainability by coffee and red wine of opaque and high translucency yttria-stabilized zirconia before and after hydrothermal degradation in saline solution or oral mouthwash. Presintered zirconia blocks with medium opacity (ZrO2-3 mol. % of Y2O3) designed as ZrOp and high translucency zirconia (5.2 mol. % of Y2O3) designed as ZrTrans were used. Specimens (n = 80/group) were cut and sintered at 1500°C for 2 h. The specimens were hydrothermally degraded in an autoclave (134°C–1.8 kg/cm2) for 20 h in saline solution (0.5 g/L) and oral mouthwash solution (0.02% sodium fluoride, without alcohol and with 21.6% alcohol). After hydrothermal degradation, the samples were immersed in containers with coffee or red wine for 14 days to determine their color stainability. The results showed that the ZrOp had a higher bending strength than the ZrTrans before and after hydrothermal aging. In ZrOp and ZrTrans, the roughness increased after hydrothermal degradation. ZrOp samples had a higher Ra roughness than the ZrTrans samples. Roughness did not change after immersion in coffee or red wine. The X-ray diffraction (XRD) results showed that ZrOp samples underwent a tetragonal to monoclinic phase transformation, while ZrTrans samples were unchanged. Both ZrOp and ZrTrans samples changed color after immersion in coffee and red wine.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physical Properties and Color Stainability by Coffee and Red Wine of Opaque and High Translucency Zirconia Dental Ceramics after Hydrothermal Degradation\",\"authors\":\"Ana Lúcia Nascimento Oliveira, C. Elias, Heraldo Elias Salomão Dos Santos, Claudinei dos Santos, R. de Biasi\",\"doi\":\"10.1155/2022/1571729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective was to evaluate the bending strength, phase transformation, roughness, and color stainability by coffee and red wine of opaque and high translucency yttria-stabilized zirconia before and after hydrothermal degradation in saline solution or oral mouthwash. Presintered zirconia blocks with medium opacity (ZrO2-3 mol. % of Y2O3) designed as ZrOp and high translucency zirconia (5.2 mol. % of Y2O3) designed as ZrTrans were used. Specimens (n = 80/group) were cut and sintered at 1500°C for 2 h. The specimens were hydrothermally degraded in an autoclave (134°C–1.8 kg/cm2) for 20 h in saline solution (0.5 g/L) and oral mouthwash solution (0.02% sodium fluoride, without alcohol and with 21.6% alcohol). After hydrothermal degradation, the samples were immersed in containers with coffee or red wine for 14 days to determine their color stainability. The results showed that the ZrOp had a higher bending strength than the ZrTrans before and after hydrothermal aging. In ZrOp and ZrTrans, the roughness increased after hydrothermal degradation. ZrOp samples had a higher Ra roughness than the ZrTrans samples. Roughness did not change after immersion in coffee or red wine. The X-ray diffraction (XRD) results showed that ZrOp samples underwent a tetragonal to monoclinic phase transformation, while ZrTrans samples were unchanged. Both ZrOp and ZrTrans samples changed color after immersion in coffee and red wine.\",\"PeriodicalId\":13704,\"journal\":{\"name\":\"International Journal of Biomaterials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1571729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1571729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Physical Properties and Color Stainability by Coffee and Red Wine of Opaque and High Translucency Zirconia Dental Ceramics after Hydrothermal Degradation
The objective was to evaluate the bending strength, phase transformation, roughness, and color stainability by coffee and red wine of opaque and high translucency yttria-stabilized zirconia before and after hydrothermal degradation in saline solution or oral mouthwash. Presintered zirconia blocks with medium opacity (ZrO2-3 mol. % of Y2O3) designed as ZrOp and high translucency zirconia (5.2 mol. % of Y2O3) designed as ZrTrans were used. Specimens (n = 80/group) were cut and sintered at 1500°C for 2 h. The specimens were hydrothermally degraded in an autoclave (134°C–1.8 kg/cm2) for 20 h in saline solution (0.5 g/L) and oral mouthwash solution (0.02% sodium fluoride, without alcohol and with 21.6% alcohol). After hydrothermal degradation, the samples were immersed in containers with coffee or red wine for 14 days to determine their color stainability. The results showed that the ZrOp had a higher bending strength than the ZrTrans before and after hydrothermal aging. In ZrOp and ZrTrans, the roughness increased after hydrothermal degradation. ZrOp samples had a higher Ra roughness than the ZrTrans samples. Roughness did not change after immersion in coffee or red wine. The X-ray diffraction (XRD) results showed that ZrOp samples underwent a tetragonal to monoclinic phase transformation, while ZrTrans samples were unchanged. Both ZrOp and ZrTrans samples changed color after immersion in coffee and red wine.