Jeimmy González-Masís, Jorge M Cubero-Sesin, Yendry Regina Corrales-Ureña, Sara González-Camacho, Nohelia Mora-Ugalde, José Roberto Vega-Baudrit, Klaus Rischka, Virendra Verma, Rodolfo J Gonzalez-Paz
{"title":"Nonirritant and Cytocompatible <i>Tinospora cordifolia</i> Nanoparticles for Topical Antioxidant Treatments.","authors":"Jeimmy González-Masís, Jorge M Cubero-Sesin, Yendry Regina Corrales-Ureña, Sara González-Camacho, Nohelia Mora-Ugalde, José Roberto Vega-Baudrit, Klaus Rischka, Virendra Verma, Rodolfo J Gonzalez-Paz","doi":"10.1155/2020/3637098","DOIUrl":"10.1155/2020/3637098","url":null,"abstract":"<p><p><i>Tinospora cordifolia</i> extract contains antioxidants such as polyphenols, and thus, it has been used as a natural phytochemical antioxidant therapeutic agent. Many of these compounds are insoluble or only partially soluble in water. In this study, we produced a novel aqueous nanoparticle formulation, with an average particle size of 182.9 ± 3.8 nm, to improve the dispersion of the bioactive compounds in water and to increment its bioavailability. The nanoparticles are composed of polyphenols, alkaloids, and glycosides. We studied the effect of this nanoparticle formulation on mouse 3T3 fibroblast cell viability and New Zealand rabbit dermal irritability tests. Concentrations of 2.5, 25, and 250 <i>µ</i>g/mL resulted in similar cell viability to cells in culture media. An intermediate concentration of 12.45 mg/ml was used for the acute dermal irritability test. There were no severe alterations that compromised animal health. These results represent a precedent for application of such nanoparticles derived from plant stems, such as <i>Tinospora cordifolia</i>, in biomedicine and in antiaging cosmetic treatments.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"3637098"},"PeriodicalIF":3.0,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38359232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Merlis P Alvarez-Berrios, Lisa M Aponte-Reyes, Lourdes Diaz-Figueroa, Juan Vivero-Escoto, Alexis Johnston, David Sanchez-Rodriguez
{"title":"Preparation and In Vitro Evaluation of Alginate Microparticles Containing Amphotericin B for the Treatment of <i>Candida</i> Infections.","authors":"Merlis P Alvarez-Berrios, Lisa M Aponte-Reyes, Lourdes Diaz-Figueroa, Juan Vivero-Escoto, Alexis Johnston, David Sanchez-Rodriguez","doi":"10.1155/2020/2514387","DOIUrl":"https://doi.org/10.1155/2020/2514387","url":null,"abstract":"<p><p>Invasive candidiasis (IC) remains as a major cause of morbidity and mortality in critically ill patients. Amphotericin B (AmB) is one of the most effective antifungal agents commonly used to treat this infection. However, it induces severe side effects such as nephrotoxicity, cardiac alterations, nausea, fever, and liver damage. The utilization of drug delivery systems has been explored to overcome these limitations. Several AmB lipid formulations have been developed and are currently available in the market. Although they have the ability to reduce the main side effects of free AmB, their high cost, necessity of repeated intravenous injections for successful treatment, and incidence of pulmonary toxicity have limited their use. In the last decades, alginate has gained significant interest in drug delivery applications as a cost-effective strategy to improve the safety and therapeutic effect of toxic drugs. In this work, the clinically relevant drug AmB was encapsulated into alginate microparticles using the emulsification/external gelation method. We hypothesize that this synthesis strategy may positively impact the antifungal efficacy of AmB-loaded MCPs toward <i>Candida albicans</i> cells while reducing the toxicity in human lung cells. To prove this hypothesis, the ability of the microplatform to disrupt the cellular membrane potential was tested and its antifungal effectiveness toward <i>Candida albicans</i> cells was evaluated using the cell counting and plate count methods. Moreover, the toxicity of the microplatform in human lung cells was evaluated using CellTiter 96® AQueous cell viability assay and qualitative diffusion analysis of acridine orange. Our results demonstrated that the platform developed in this work was able to induce antifungal toxicity against <i>Candida albicans</i> yeast cells at the same level of free AmB with minimal toxicity to lung cells, which is one of the main side effects induced by commercial drug delivery systems containing AmB. Overall, our data provides convincing evidence about the effectiveness of the alginate-based microplatform toward <i>Candida albicans</i> cells. In addition, this vehicle may not require several infusions for a successful treatment while reducing the pulmonary toxic effect induced by commercial lipid formulations.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"2514387"},"PeriodicalIF":3.1,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/2514387","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38270313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lais Morandini Rodrigues, Elis Andrade Lima Zutin, Elisa Mattias Sartori, Daniela Baccelli Silveira Mendonça, Gustavo Mendonça, Yasmin Rodarte Carvalho, Luana Marotta Reis de Vasconcellos
{"title":"Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation.","authors":"Lais Morandini Rodrigues, Elis Andrade Lima Zutin, Elisa Mattias Sartori, Daniela Baccelli Silveira Mendonça, Gustavo Mendonça, Yasmin Rodarte Carvalho, Luana Marotta Reis de Vasconcellos","doi":"10.1155/2020/1708214","DOIUrl":"https://doi.org/10.1155/2020/1708214","url":null,"abstract":"<p><p>Studies have been directed towards the production of new titanium alloys, aiming for the replacement of Ti-6 Aluminium-4 Vanadium (TiAlV) alloy in the future. Many mechanisms related to biocompatibility and chemical characteristics have been studied in the field of implantology, but enzymatic defenses against oxidative stress remain underexplored. Bone marrow stromal cells have been explored as source of cells, which have the potential to differentiate into osteoblasts and therefore could be used as cells-based therapy. The objective of this study was to evaluate the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in porous scaffolds of Ti-6 Aluminium-4 Vanadium (TiAlV), Ti-35 Niobium (TiNb), and Ti-35 Niobium-7 Zirconium-5 Tantalum (TiNbZrTa) on mouse bone marrow stromal cells. Porous titanium alloy scaffolds were prepared by powder metallurgy. After 24 hours, cells plated on the scaffolds were analyzed by scanning electron microscopy (SEM). The antioxidant enzyme activity was measured 72 hours after cell plating. Quantitative real time PCR (qRT-PCR) was performed after 3, 7, and 14 days, and <i>Runx2</i> (Runt-related transcription factor2) expression was evaluated. The SEM images showed the presence of interconnected pores and growth, adhesion, and cell spreading in the 3 scaffolds. Although differences were noted for SOD and CAT activity for all scaffolds analyzed, no statistical differences were observed (<i>p</i> > 0.05). The osteogenic gene <i>Runx2</i> presented high expression levels for TiNbZrTa at day 7, compared to the control group (TiAlV day 3). At day 14, all scaffolds had more than 2-fold induction for <i>Runx2</i> mRNA levels, with statistically significant differences compared to the control group. Even though we were not able to confirm statistically significant differences to justify the replacement of TiAlV regarding antioxidant enzymes, TiNbZrTa was able to induce faster bone formation at early time points, making it a good choice for biomedical and tissue bioengineering applications.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"1708214"},"PeriodicalIF":3.1,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1708214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38270312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P W Huisken Mejouyo, E Dydimus Nkemaja, O R Beching, N R Sikame Tagne, T Kana'a, E Njeugna
{"title":"Physical and Tensile Properties of Handmade <i>Sida rhombifolia</i> Paper.","authors":"P W Huisken Mejouyo, E Dydimus Nkemaja, O R Beching, N R Sikame Tagne, T Kana'a, E Njeugna","doi":"10.1155/2020/3967641","DOIUrl":"https://doi.org/10.1155/2020/3967641","url":null,"abstract":"<p><p>This study focuses on the production and characterization of biodegradable handmade paper from the <i>Sida rhombifolia</i> plant (SRP) cellulose. <i>Sida rhombifolia</i> plant is a seasonal plant that grows in the equatorial and tropical climates. The studies carried out on this SRP were aimed at investigating the methods required for the production of handmade paper from SRP plant and also at determining the tensile strength. Four specimens of SRP paper of different additive labels S0 (no additive), S1 (starch and KOH), S2 (starch), and S3 (Foska liquid glue) were produced using the Kraft method. Tensile properties (stress at break, elongation at break, and Young's modulus), the rate of water absorption, and the rate of moisture absorption were carried out. Results showed that the addition of potassium hydroxide considerably reduces Young's modulus of SRP handmade paper (S1) while the Foska liquid glue (S3) significantly improves it. In addition, the addition of potassium hydroxide and Foska liquid substantially improves the water absorption properties of the paper S2 and S3, respectively. The adhesive liquid creates more porosity and consequently increases the absorption of water. The addition of potassium hydroxide and Foska liquid significantly embedded the rate of moisture absorption. From the results obtained, it can be concluded that the paper S3 can be used as packaging paper since it has better mechanical properties and moisture absorption.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"3967641"},"PeriodicalIF":3.1,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/3967641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38220173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gustavo Grossi-Oliveira, Leonardo P Faverani, Bruno Coelho Mendes, Tárik Ocon Braga Polo, Gabriel Cury Batista Mendes, Valthierre Nunes de Lima, Paulo Domingos Ribeiro Júnior, Roberta Okamoto, Osvaldo Magro-Filho
{"title":"Comparative Evaluation of Bone Repair with Four Different Bone Substitutes in Critical Size Defects.","authors":"Gustavo Grossi-Oliveira, Leonardo P Faverani, Bruno Coelho Mendes, Tárik Ocon Braga Polo, Gabriel Cury Batista Mendes, Valthierre Nunes de Lima, Paulo Domingos Ribeiro Júnior, Roberta Okamoto, Osvaldo Magro-Filho","doi":"10.1155/2020/5182845","DOIUrl":"https://doi.org/10.1155/2020/5182845","url":null,"abstract":"<p><p>This study evaluated the osteoconductive potential of four biomaterials used to fill bone defects. For this, 24 male Albino rabbits were submitted to the creation of a bilateral 8 mm calvarial bone defect. The animals were divided into four groups-bovine hydroxyapatite, Bio-Oss® (BIO); Lumina-Bone Porous® (LBP); Bonefill® (BFL); and an alloplastic material, Clonos® (CLN)-and were euthanized at 14 and 40 days. The samples were subjected to histological and histometric analysis for newly formed bone area. Immunohistochemical analysis for Runt-related transcription factor 2 (Runx2), vascular endothelial growth factor (VEGF), and osteocalcin (OC) was performed. After statistical analysis, the CLN group showed greater new bone formation (NB) in both periods analyzed (<i>p</i> < 0.05). At 14 days, the NB showed greater values in BIO in relation to LBP and BFL groups; however, after 40 days, the LBP group surpassed the results of BIO (<i>p</i> < 0.001). The immunostaining showed a decrease in Runx2 intensity in BIO after 40 days, while it increased for LBP (<i>p</i> < 0.05). The CLN showed increased OC compared to the other groups in both periods analyzed (<i>p</i> < 0.05). Therefore, CLN showed the best osteoconductive behavior in critical defects in rabbit calvaria, and BFL showed the lowest osteoconductive property.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"5182845"},"PeriodicalIF":3.1,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5182845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38039795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Does Modification of Amalgomer with Propolis Alter Its Physicomechanical Properties? An In Vitro Study.","authors":"Reham M Abdallah, Amr M Abdelghany, Neven S Aref","doi":"10.1155/2020/3180879","DOIUrl":"https://doi.org/10.1155/2020/3180879","url":null,"abstract":"<p><strong>Objective: </strong>To assess if incorporating ethanolic extract of propolis into ceramic-reinforced glass ionomer (Amalgomer CR) might have an influence on its physicomechanical properties.</p><p><strong>Materials and methods: </strong>Three groups were assessed; group I: Amalgomer CR (control) and two experimental groups (II and III) of propolis added to the liquid of Amalgomer CR with 25 and 50 v/v %, respectively. Evaluation parameters were color stability, compressive strength, microhardness, and surface roughness. Representative specimens of each group were analyzed by Fourier-transform infrared spectroscopy, energy-dispersive X-ray, X-ray diffraction, and scanning electron microscopy. Analysis of variance (ANOVA) was used to compare the results, followed by a Tukey post hoc test (<i>p</i> < 0.05).</p><p><strong>Results: </strong>Nonsignificant color change for both groups of modified Amalgomer CR. Meanwhile, the two experimental groups exhibited a significant increase in both compressive strength and microhardness. Simultaneously, there was a significant difference in roughness values among groups with the lowest roughness values exhibited by the 50 v/v % propolis concentration.</p><p><strong>Conclusions: </strong>Modification of Amalgomer CR with 50 v/v % propolis may increase its mechanical properties without compromising its esthetic. <i>Clinical Significance</i>. Modification of Amalgomer CR by 50 v/v % propolis is supposed to be a hopeful restorative material with favorable characteristics.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"3180879"},"PeriodicalIF":3.1,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/3180879","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37976500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Silica-Coated Fe<sub>3</sub>O<sub>4</sub> Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity.","authors":"Goshu Asab, Enyew Amare Zereffa, Teshome Abdo Seghne","doi":"10.1155/2020/4783612","DOIUrl":"https://doi.org/10.1155/2020/4783612","url":null,"abstract":"<p><p>Magnetite and silica-coated magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles (NPs) were synthesized by water-in-oil (W/O) microemulsion method from hydrated ferric nitrate, ferrous sulfate precursors and ammonia a precipitating agent with the assistance of Tween-80 and SDS surfactants. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, thermal analyzer, and infrared spectroscopy. X-ray diffraction pattern of Fe<sub>3</sub>O<sub>4</sub> showed that particles were phase pure with a cubic inverse spinel structure and FT-infrared spectra confirmed the presence of Fe-O bond in tetrahedral and octahedral interstitial sites. The crystallite size determined from powder XRD data with Scherer's equation was in the range of 7.3 ± 0.05 nm-10.83 ± 0.02 nm for uncoated Fe<sub>3</sub>O<sub>4</sub> and 16 ± 0.14 nm for silica-coated Fe<sub>3</sub>O<sub>4</sub> NPs. The SEM micrographs of the uncoated Fe<sub>3</sub>O<sub>4</sub> oxide revealed the agglomeration of the magnetite (Fe<sub>3</sub>O<sub>4</sub>) particles. But the silica-coated Fe<sub>3</sub>O<sub>4</sub> oxide exhibited homogeneous distribution of particles with relatively less agglomerate of the particles. The particle size of Fe<sub>3</sub>O<sub>4</sub> NPs slightly increased with the temperature and precursor concentration. The antimicrobial activities of Fe<sub>3</sub>O<sub>4</sub> and silica-coated Fe<sub>3</sub>O<sub>4</sub> nanoparticles were tested against Gram-negative (<i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i>) and Gram-positive (<i>Staphylococcus aureus</i> and <i>Bacillus subtilis</i>) bacteria. Both Fe<sub>3</sub>O<sub>4</sub> and silica-coated Fe<sub>3</sub>O<sub>4</sub> NPs demonstrated better antimicrobial activities.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"4783612"},"PeriodicalIF":3.1,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/4783612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37851283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Ferrairo Danieletto-Zanna, Vinícius Ferreira Bizelli, Guilherme André Del Arco Ramires, Tamires Melo Francatti, Paulo Sérgio Perri de Carvalho, Ana Paula Farnezi Bassi
{"title":"Osteopromotion Capacity of Bovine Cortical Membranes in Critical Defects of Rat Calvaria: Histological and Immunohistochemical Analysis.","authors":"Carolina Ferrairo Danieletto-Zanna, Vinícius Ferreira Bizelli, Guilherme André Del Arco Ramires, Tamires Melo Francatti, Paulo Sérgio Perri de Carvalho, Ana Paula Farnezi Bassi","doi":"10.1155/2020/6426702","DOIUrl":"https://doi.org/10.1155/2020/6426702","url":null,"abstract":"<p><p>Membranes that aid the guided bone regeneration (GBR) process have been the subject of studies of compatible biomaterials that contribute to this repair process. The present study compared different membranes used in critical-size defects of rat calvaria by assessing GBR as well as histological, histomorphometric, and immunohistochemical reactions. Forty-eight male albino Wistar rats were randomly allocated into four groups (<i>n</i> = 12 each), namely, C: membrane-free control group (only blood clot, negative control group); BG: porcine collagen membrane group (Bio-Gide®, positive control group); GD: bovine cortical membrane group (first experimental group); and GDF: thicker bovine cortical membrane group (second experimental group). Rats were euthanized at 30 and 60 days postoperatively. Quantitative data from the histometric analysis were submitted to two-way ANOVA and Tukey's posttest when <i>p</i> < 0.05. Histomorphometric results of the thicker bovine cortical membrane at 30 and 60 days were promising, showing improved new bone formation values (<i>p</i> < 0.05), and the CD group presented similar results in both analysis periods, being surpassed only by the GDF group (<i>p</i> < 0.05). The immunohistochemical results were associated with the histomorphometric data. A less-thick membrane also assisted in GBR. All membranes promoted GBR, especially the positive control and experimental groups.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2020 ","pages":"6426702"},"PeriodicalIF":3.1,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/6426702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37717672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potentials of Biochars Derived from Bamboo Leaf Biomass as Energy Sources: Effect of Temperature and Time of Heating.","authors":"Bidayatul Armynah, Dahlang Tahir, Monalisa Tandilayuk, Zuryati Djafar, Wahyu H Piarah","doi":"10.1155/2019/3526145","DOIUrl":"https://doi.org/10.1155/2019/3526145","url":null,"abstract":"<p><p>Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"3526145"},"PeriodicalIF":3.1,"publicationDate":"2019-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3526145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37523582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcel Cédric Deussi Ngaha, Evangéline Njanja, Giscard Doungmo, Arnaud Tamo Kamdem, Ignas Kenfack Tonle
{"title":"Indigo Carmine and 2,6-Dichlorophenolindophenol Removal Using Cetyltrimethylammonium Bromide-Modified Palm Oil Fiber: Adsorption Isotherms and Mass Transfer Kinetics.","authors":"Marcel Cédric Deussi Ngaha, Evangéline Njanja, Giscard Doungmo, Arnaud Tamo Kamdem, Ignas Kenfack Tonle","doi":"10.1155/2019/6862825","DOIUrl":"https://doi.org/10.1155/2019/6862825","url":null,"abstract":"<p><p>In the present work, the usefulness of cetyltrimethylammonium bromide-modified palm oil fiber (CTAB-modified POF) for the removal of indigo carmine (IC) and 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was investigated. Raw, NaOH-treated, and CTAB-modified POF were characterized by Fourier-transform infrared (FT-IR) spectroscopy, elemental analysis, thermogravimetric-hyperdifferential scanning calorimetric (TG-HDSC) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption studies of IC and 2,6-DCPIP were performed in batch mode using CTAB-modified POF. The results showed that equilibrium was attained after a contact time of 30 minutes for IC and 20 minutes for 2,6-DCPIP. The maximum capacity of adsorption was obtained at pH = 2. The capacity of adsorption considerably increased with modified biosorbents and with increasing initial concentration of dyes. The ionic strength favors the increasing adsorption capacity of IC and does not affect the adsorption capacity of 2,6-DCPIP. The percentage of adsorption increased with increasing mass of the biosorbents. The nonlinear regression of adsorption isotherms showed that Freundlich (<i>r</i> <sup>2</sup> = 0.953; <i>χ</i> <sup>2</sup> = 4.398) and Temkin (<i>r</i> <sup>2</sup> = 0.986; <i>χ</i> <sup>2</sup> = 1.196) isotherms are most appropriate to describe the adsorption of IC and 2,6-DCPIP on CTAB-modified POF, respectively. The maximum adsorption capacities determined by the Langmuir isotherm were 275.426 and 230.423 <i>μ</i>mol·g<sup>-1</sup> for IC and 2,6-DCPIP, respectively. The linear regression of adsorption kinetics was best described by the pseudo-second-order model (<i>R</i> <sup>2</sup> ≥ 0.998). The diffusion mechanism showed that external mass transfer is the main rate controlling step. Desorption of the two dyes is favorable in the alkaline medium.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2019 ","pages":"6862825"},"PeriodicalIF":3.1,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6862825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37523583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}