Laura Rojas-Rojas, Andrea Ulloa-Fernández, Silvia Castro-Piedra, Walter Vargas-Segura, T. Guillén-Girón
{"title":"Evaluation of Biomechanical and Chemical Properties of Gamma-Irradiated Polycaprolactone Microfilaments for Musculoskeletal Tissue Engineering Applications","authors":"Laura Rojas-Rojas, Andrea Ulloa-Fernández, Silvia Castro-Piedra, Walter Vargas-Segura, T. Guillén-Girón","doi":"10.1155/2022/5266349","DOIUrl":"https://doi.org/10.1155/2022/5266349","url":null,"abstract":"An appropriate and reliable sterilization technique is crucial for tissue engineering scaffolds. Skeletal muscle scaffolds are often fabricated using microfilaments of a wide variety of polymers. One method for sterilization is 25 kGy of gamma irradiation. In addition, sterilization through irradiation should administer a dose within a specific range. Radiation directly affects the chemical and mechanical properties of scaffolds. The accuracy and effects of irradiation are often not considered during sterilization procedures; however, these are important since they provide insight on whether the sterilization procedure is reliable and reproducible. This study focused on the chemical and mechanical characterization of 25 kGy gamma-irradiated scaffold. The accuracy and uncertainty of the irradiation procedure were also obtained. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were performed to determine whether the crystallinity of the polymer changed after irradiation and whether gamma rays influenced its thermal properties. The tensile parameters of the microfilaments were analyzed by comparing irradiated and nonirradiated scaffolds to determine whether gamma radiation changed their elastic behavior. Dose distribution and uncertainty were recorded with several dosimeters. The results showed that the irradiation process slightly affected the mechanical parameters of the scaffold; however, it did not modify its crystallinity or thermal properties. The irradiation was uniform, since the measured uncertainty was low. The scaffold was pathogen-free after 7 days; this meant sterilization was achieved. These results indicated that gamma-sterilized scaffolds were a promising material for use as a skeletal muscle analog material for tissue-engineering applications because they can be sterilized with gamma rays without changing their chemical structure and mechanical properties. This study provided the dose distribution measurement and uncertainty calculations for the sterilization procedure.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42802188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emad Azmy, M. R. Al-kholy, Ahmad M. Al-Thobity, M. Gad, M. A. Helal
{"title":"Comparative Effect of Incorporation of ZrO2, TiO2, and SiO2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An In Vitro Study","authors":"Emad Azmy, M. R. Al-kholy, Ahmad M. Al-Thobity, M. Gad, M. A. Helal","doi":"10.1155/2022/5856545","DOIUrl":"https://doi.org/10.1155/2022/5856545","url":null,"abstract":"Objective This study aimed to investigate the effects of nanoparticles (zirconium dioxide (ZrO2), titanium dioxide (TiO2), and silicon dioxide (SiO2)) on the flexural strength, impact strength, hardness, and wear resistance of the acrylic resin denture base material. Materials and Methods Acrylic resin specimens were fabricated in dimensions according to American Dental Association (ADA) specifications per test. Specimens were divided according to nanofiller into four groups; unmodified as control, ZrO2 (Z), TiO2, (T), and SiO2 (S) groups. Each one was subdivided into two subgroups according to nanoparticle concentrations; 3% and 7% (Z3, Z7, T3, T7, S3, and S7). A 3-point bending test, Charpy impact test, and Vickers hardness test were used for flexural strength, impact strength, and hardness measurements, respectively. Wear resistance was measured by the differences in surface roughness of tested specimens before and after the wear test. A scanning electron microscope was used to assess nanoparticle specifications and distributions and for fracture surfaces analysis. ANOVA, Bonferroni's post hoc test, and the Kruskal–Wallis test were applied for data analysis (α = 0.05). Results Regarding the flexural and impact strength, there was a statistically remarkable increase for all tested groups compared with the control group, except for the T7 and S7 groups (P value <0.001, effect size = 0.893) and (P value <0.001, effect size = 0.759), respectively. There was a statistically significant improvement in the hardness of all tested groups compared with the control group (P value <0.001, effect size = 0.67) except T3 and S3. Regarding wear, a statistically significant enhancement was noticed in the wear resistance of all tested groups (P value <0.001, effect size = 0.685), except for the T7 and S7 groups. Conclusion The flexural strength, impact strength, and wear resistance improved with both concentrations of ZrO2 and low TiO2 and SiO2 concentrations. The hardness increased with both concentrations of ZrO2 and high TiO2 and SiO2 concentrations.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46601263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meruyert I Tleubayeva, R. Abdullabekova, U. Datkhayev, M. Ishmuratova, M. Alimzhanova, K. Kozhanova, Aida M. Seitaliyeva, K. Zhakipbekov, Zhanar Iskakova, E. Serikbayeva, E. Flisyuk
{"title":"Investigation of CO2 Extract of Portulaca oleracea for Antioxidant Activity from Raw Material Cultivated in Kazakhstan","authors":"Meruyert I Tleubayeva, R. Abdullabekova, U. Datkhayev, M. Ishmuratova, M. Alimzhanova, K. Kozhanova, Aida M. Seitaliyeva, K. Zhakipbekov, Zhanar Iskakova, E. Serikbayeva, E. Flisyuk","doi":"10.1155/2022/6478977","DOIUrl":"https://doi.org/10.1155/2022/6478977","url":null,"abstract":"Medicinal plants remain as an important resource in the fight against many diseases, especially in developing countries. Antioxidants are substances capable of delaying, retarding, and preventing the oxidation of lipids or substances that delay or prevent free radical reactions during lipid oxidation. Natural antioxidants such as ascorbic acid, tocopherol, phenolic compounds, and flavonoids are a safe alternative to chemical antioxidants. In present work, results of antioxidant activity of raw materials from the cultivated plant Portulaca oleracea are presented. The extraction time was optimized to 780 minutes; the yield of extractive substances was 1.25% in the production of CO2 extract under subcritical conditions. For the first time, the antioxidant activity of Portulaca oleracea CO2 extract was determined by the amperometric method. Gas chromatography-mass spectrometry (GC-MS) chemical analysis of Portulaca oleracea CO2 extract dissolved in hexane revealed 37 components, including a complex mixture of aldehydes, alkanes, alkenes, esters, diterpenes, steroids, vitamin E, and carbohydrates. The investigation results showed that the Portulaca oleracea CO2 extract was promising for pharmaceutical, cosmetic, and food industries and had great potential for the prevention and treatment of diseases caused by oxidative stress.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41533629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Varghese, Dhanasekaran Sihivahanan, K. Venkatesh
{"title":"Development of Novel Antimicrobial Dental Composite Resin with Nano Cerium Oxide Fillers","authors":"E. Varghese, Dhanasekaran Sihivahanan, K. Venkatesh","doi":"10.1155/2022/3912290","DOIUrl":"https://doi.org/10.1155/2022/3912290","url":null,"abstract":"Objectives To assess the antibacterial efficacy of experimental dental composite resin with cerium oxide nanoparticles as fillers. Methods The cerium oxide nanoparticles were prepared by the coprecipitation procedure. Synthesized 3wt% CeO2 nanoparticles were added to the composite resin as antibacterial filler. Experimental composite resin was manually prepared by adding ingredients. The resin matrix consisted of two mixed monomers, bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate, diketone as the photo initiator, and N, N-dimethylaminoethyl methacrylate as a coinitiator. The antibacterial efficacy against Streptococcus mutans, Streptococcus mitis, Streptococcus aureus, and Lactobacillus spp. bacterial strains was tested using the microdilution method keeping commercially available 3M Filtek Z250 restorative composite as control. Results The experimental dental composite demonstrated 99.503% efficacy against Streptococcus mutans, 99.441% efficacy against Streptococcus mitis, 99.416% efficacy against Streptococcus aureus, and 99.233% efficacy against Lactobacillus spp. Conclusion Integrating cerium oxide nanoparticles as fillers into dental composite resin can be promising in terms of antibacterial activity, provided furthermore study has to be conducted to examine other properties. Clinical Significance. Previous studies attempted adding CeO2 nanoparticles into acrylic resins that showed improvement in mechanical properties, but literature is nil on the dental composite resin and cerium oxide nanoparticles. This study demonstrates the development of an experimental antibacterial dental composite resin that can resolve most of the problems related to secondary caries around dental composite restorations.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44692572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioconversion of Keratin Wastes Using Keratinolytic Microorganisms to Generate Value-Added Products.","authors":"Muhammed Seid Anbesaw","doi":"10.1155/2022/2048031","DOIUrl":"10.1155/2022/2048031","url":null,"abstract":"<p><p>The management of keratinous wastes generated from different industries is becoming a major concern across the world. In each year, more than a billion tons of keratin waste is released into the environment. Despite some trials that have been performed and utilize this waste into valuable products, still a huge amount of keratin waste from different sources is a less explored biomaterial for making valuable products. This indicates that the huge amount of keratin waste is neither disposed properly nor converted into usable products rather thrown away to the environment that causes environmental pollution. Due to the introduction of this waste associated with different pathogenic organisms into soil and water bodies, human beings and other small and large animals are affected by different diseases. Therefore, there is a need for modern and ecofriendly approaches to dispose and convert this waste into usable products. Hence, the objective of this review is to give a concise overview regarding the degradation of keratin waste by biological approaches using keratinase producing microorganisms. The review also focuses on the practical use of keratinases and the economical importance of bioconverted products of keratinous wastes for different applications. Various researches have been studied about the source, disposal mechanisms, techniques of hydrolysis, potential use, and physical and chemical properties of keratin wastes. However, there is negligible information with regard to the use of keratin wastes as media supplements for the growth of keratinolytic microorganisms and silver retrieval from photographic and used X-ray films. Hence, this review differs from other similar reviews in the literature in that it discusses these neglected concerns.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"2048031"},"PeriodicalIF":3.0,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9599591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asdar Gani, R. Yulianty, Supiaty Supiaty, Machirah Rusdy, Gustivanny Dwipa Asri, Dian Eka Satya, Ayu Rahayu Feblina, H. Achmad
{"title":"Effectiveness of Combination of Chitosan Gel and Hydroxyapatite from Crabs Shells (Portunus pelagicus) Waste as Bonegraft on Periodontal Network Regeneration through IL-1 and BMP-2 Analysis","authors":"Asdar Gani, R. Yulianty, Supiaty Supiaty, Machirah Rusdy, Gustivanny Dwipa Asri, Dian Eka Satya, Ayu Rahayu Feblina, H. Achmad","doi":"10.1155/2022/1817236","DOIUrl":"https://doi.org/10.1155/2022/1817236","url":null,"abstract":"Background Periodontitis can be treated by regenerating periodontal tissue using a bone graft. Several natural materials such as chitosan and minerals such as hydroxyapatite can be developed to increase periodontal tissue regeneration. Chitosan has a high potential in healing wounds. Hydroxyapatite has excellent properties such as biocompatibility, osteoconductive, osteoinductive, and osteogenesis, making it an ideal material for soft and hard tissue regeneration. Chitosan and hydroxyapatite can be obtained from the shells of crustaceans, such as crabs shells (Portunus pelagicus). Objective To assess the effectiveness of the combination of chitosan gel and hydroxyapatite powder as a bone graft on periodontal tissue regeneration in experimental animals. Periodontal tissue regeneration was assessed by expressing inflammatory cytokine gene indicators IL-1 and BMP-2. Methods Experimental laboratory research and clinical trials with posttest only control group design. Twenty-seven Wistar rats were divided into three groups. Then the femoral bone defect was made, the positive control group was given placebo gel, the positive control group was given BATAN hydroxyapatite, and the test group was given a combination of chitosan gel and hydroxyapatite crab shells. Wistar rats were sacrificed on days 7, 14, and 21, and the femur bone was then taken for immunohistochemical analysis to determine the levels of IL-1 and BMP-2. The Kolmogorov–Smirnov test, Levene test, and one-way ANOVA analyzed the data. Results On days 7, 14, and 21, the expression levels of IL-1 and BMP2 were significantly different between the three groups. The group added with chitosan gel and crab shell HA showed a faster decrease in IL-1 expression than the control group. BMP-2 expression increased in the test group compared to the control group. Conclusion The combination of chitosan gel and hydroxyapatite inhibited the production of proinflammatory cytokines and increased the production of BMP-2.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45490720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Supidcha Jirawitchalert, Samon Mitaim, Ching-Yi Chen, N. Patikarnmonthon
{"title":"Cotton Cellulose-Derived Hydrogel and Electrospun Fiber as Alternative Material for Wound Dressing Application","authors":"Supidcha Jirawitchalert, Samon Mitaim, Ching-Yi Chen, N. Patikarnmonthon","doi":"10.1155/2022/2502658","DOIUrl":"https://doi.org/10.1155/2022/2502658","url":null,"abstract":"Cotton has been recognized as a useful biomaterial over decades, and it has been widely applied in the textile industry. However, a large amount of cotton waste is generated during the manufacturing processes, but it has been considered as a low-value product. With high content of cellulose remaining in cotton waste, our study focuses on transforming cotton cellulose into a valuable product. Cellulose was extracted from cotton waste and modified into two main materials for wound dressing application: hydrogel-based water absorbent materials and electrospun composite nanofibers. In order to enhance the water absorption, carboxymethyl cellulose (CMC), the modified cellulose with functional group prone to interact with water molecules, has been developed in this study. The hydrogel-based CMC was created by using the chemical cross-linking reaction of epichlorohydrin (ECH). The hydrogel demonstrated the swelling and reswelling ability by 1718 ± 137% and 97.95 ± 9.76%, respectively. Meanwhile, cellulose/PEG in trifluoroacetic acid (TFA) was successfully fabricated as nonwoven composite by a conventional electrospinning technique. The fabrics provided highly appropriated properties as wound dressing, including the following: water absorption was up to 1300 times and water vapor permeability controlled in the range of 2163–2285 g·m−2·day−1. This showed the preliminary information for recovering cotton waste into valuable products.","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43923935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Evaluation of the Radiopacity of Contemporary Restorative CAD/CAM Blocks Using Digital Radiography Based on the Impact of Material Composition","authors":"N. Elhelbawy, Rehab F Ghouraba, Fatma A Hasaneen","doi":"10.1155/2022/4131176","DOIUrl":"https://doi.org/10.1155/2022/4131176","url":null,"abstract":"Purpose The main purpose of this study was to assess the radiopacity of contemporary restorative computer-aided design (CAD)/computer-aided manufacturing (CAM) materials and the impact of material composition as measured by energy-dispersive X-ray spectrophotometry (EDX) on radiopacity. Materials and Methods Ten specimens of six CAD/CAM materials with 1 mm thickness were produced and then digitally radiographed with an aluminum (Al) step-wedge (SW) and 1 mm thick tooth slice. The specimen mean gray values (MGVs) were recorded in pixels and compared to an Al-SW, dentin, and enamel of equal thickness. For the elementary analysis of the composition of the materials, EDX was performed. Results The recorded MGVs ranged between 21.20 ± 4.94 and 238.5 ± 13.61 pixels. Materials were sorted according to the MGVs descendingly, Prettau, Vita Suprinity, Vita Enamic, Shofu, Pekkton, and BioHPP. Prettau and Vita Suprinity had significantly higher MGV than dentin and 1 mm thick Al. In comparison, Vita Enamic had a slightly higher value than dentin and 1 mm thick Al. Although Pekkton and BioHPP had MGV significantly lower than dentin and 1 mm thick Al, Shofu had a significantly lower value than dentin and nonsignificantly lower than 1 mm thick Al (p < 0.05). According to EDX analysis, the examined materials contained several components in varying quantities of radiopacity. Conclusions The radiopacity of only three studied materials exceeded the International Organization for Standardization's minimum standards (ISO).","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64777327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simara Laboy-López, Pedro O Méndez Fernández, Jorge G Padilla-Zayas, Eduardo Nicolau
{"title":"Bioactive Cellulose Acetate Electrospun Mats as Scaffolds for Bone Tissue Regeneration.","authors":"Simara Laboy-López, Pedro O Méndez Fernández, Jorge G Padilla-Zayas, Eduardo Nicolau","doi":"10.1155/2022/3255039","DOIUrl":"10.1155/2022/3255039","url":null,"abstract":"<p><p>In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"3255039"},"PeriodicalIF":3.0,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neveen Ali Shaheen, Nahla Gamaleldin Elhelbawy, Dalia Abdelhamid Sherif
{"title":"Quantitative Assessment of Apically Extruded Debris after Single-Files Supplemental Retreatment considering Apical Patency Influence: <i>In Vitro Study</i>.","authors":"Neveen Ali Shaheen, Nahla Gamaleldin Elhelbawy, Dalia Abdelhamid Sherif","doi":"10.1155/2022/7544813","DOIUrl":"https://doi.org/10.1155/2022/7544813","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to assess the impact of re-establishing apical patency on the quantity of debris extruded through the apex after three supplementary retreatment files (TruNatomy (TRN), WaveOne Gold (WOG), and XP endo Finisher R (XPFR)).</p><p><strong>Materials and methods: </strong>Eighty single-rooted mandibular premolars were prepared with ProTaper Universal rotary systems (PTU) up to F3 and obturated. The samples were divided into two main groups according to the presence or absence of the apical patency (<i>n</i> = 40), GI with apical patency and GII without apical patency. Based on the file system, which was adopted to eliminate the previous filling, each group had four subgroups (<i>n</i> = 10). In GI PTUR and GII PTUR, ProTaper Universal retreatment files (PTUR) were utilized only to remove the most primary filling material (control groups). In the other groups (PTUR) used, it was first followed by supplementary files. The quantity of debris extruded by different retreatment file systems was determined and compared to the corresponding control group with or without apical patency. Data were analyzed using a two-way ANOVA with a post hoc Tukey's multiple comparison test at a 5% significance level.</p><p><strong>Results: </strong>There was a statistically significant difference among the control and experimental groups. XPFR had the least quantity of extruded debris. Apical patency did not affect the debris extrusion.</p><p><strong>Conclusion: </strong>All tested files led to a significant apical debris extrusion regardless of apical patency.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2022 ","pages":"7544813"},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10816933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}