Insect Molecular Biology最新文献

筛选
英文 中文
The Rpfor gene modulates the locomotory activity and host-seeking behaviour of Rhodnius prolixus. Rpfor基因调节了Rhodnius prolixus的运动活性和寻找宿主的行为。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-08-08 DOI: 10.1111/imb.12952
Newmar P Marliére, Marcelo G Lorenzo, Alessandra A Guarneri
{"title":"The Rpfor gene modulates the locomotory activity and host-seeking behaviour of Rhodnius prolixus.","authors":"Newmar P Marliére, Marcelo G Lorenzo, Alessandra A Guarneri","doi":"10.1111/imb.12952","DOIUrl":"https://doi.org/10.1111/imb.12952","url":null,"abstract":"<p><p>The molecular bases of animal behaviour are intricate due to the pleiotropic nature of behaviour-modulating genes, which are often expressed across multiple tissues. The foraging gene (for) encodes a cGMP-dependent protein kinase (PKG), pivotal in regulating downstream target proteins through phosphorylation. In insects, for has been implicated in various behavioural contexts and physiological processes regarding searching for food. Rhodnius prolixus, a hematophagous bug that transmits Trypanosoma cruzi, the causative agent of Chagas disease, exhibits specific activity patterns associated with its hematophagous behaviour. Our previous work demonstrated a correlation between locomotor activity profiles and the expression of Rpfor, suggesting its involvement in modulating triatomine locomotion. In this study, we investigated the impact of Rpfor knockdown on locomotory activity, host-seeking behaviour, feeding performance and lipid metabolism in R. prolixus nymphs. Using RNA interference, we achieved a significant reduction of Rpfor expression in both the brain and fat body of R. prolixus nymphs. Knocked-down nymphs exhibited diminished non-oriented locomotory activity compared with controls, without altering the characteristic bimodal pattern of activity. Additionally, they displayed an increased tendency to approach a host, suggesting a role for Rpfor in modulating host-seeking behaviour. Feeding performance and lipid metabolism remained unaffected by Rpfor knockdown. Our findings underscore the multifaceted role of Rpfor in modulating locomotor activity and host-seeking behaviour in R. prolixus nymphs, shedding light on the molecular mechanisms underlying their hematophagous behaviour and potential implications for disease transmission. Further research is necessary to elucidate the intricate interplay between Rpfor expression, behaviour and physiological processes in triatomine bugs.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti. 埃及伊蚊采血和卵黄发生过程中的酪氨酸转运核糖核酸水平和修饰。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-08-06 DOI: 10.1111/imb.12950
Melissa Kelley, Christopher J Holmes, Cassandra Herbert, Asif Rayhan, Judd Joves, Melissa Uhran, Lucas Klaus, Ronja Frigard, Khwahish Singh, Patrick A Limbach, Balasubrahmanyam Addepalli, Joshua B Benoit
{"title":"Tyrosine transfer RNA levels and modifications during blood-feeding and vitellogenesis in the mosquito, Aedes aegypti.","authors":"Melissa Kelley, Christopher J Holmes, Cassandra Herbert, Asif Rayhan, Judd Joves, Melissa Uhran, Lucas Klaus, Ronja Frigard, Khwahish Singh, Patrick A Limbach, Balasubrahmanyam Addepalli, Joshua B Benoit","doi":"10.1111/imb.12950","DOIUrl":"10.1111/imb.12950","url":null,"abstract":"<p><p>Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts 畸形翅病毒基因A型和B型不会在天真蜜蜂宿主体内引起不同的免疫反应
IF 2.6 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-27 DOI: 10.1111/imb.12948
Amanda M. Norton, Gabriele Buchmann, Alyson Ashe, Owen T. Watson, Madeleine Beekman, Emily J. Remnant
{"title":"Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts","authors":"Amanda M. Norton, Gabriele Buchmann, Alyson Ashe, Owen T. Watson, Madeleine Beekman, Emily J. Remnant","doi":"10.1111/imb.12948","DOIUrl":"https://doi.org/10.1111/imb.12948","url":null,"abstract":"<jats:italic>Iflavirus aladeformis</jats:italic> (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with <jats:italic>Varroa destructor</jats:italic> Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (<jats:italic>Apis mellifera L.</jats:italic> [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV‐A and DWV‐B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT‐qPCR) and analysed small RNA after experimental injection with DWV‐A and DWV‐B. We found no evidence that DWV‐A and DWV‐B elicit different immune responses in honey bees. RNA interference genes were up‐regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, <jats:italic>Triatovirus nigereginacellulae</jats:italic> (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus‐derived Piwi‐interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of <jats:italic>V</jats:italic>. <jats:italic>destructor</jats:italic>, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"179 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion. 营养性 microRNA:前体和成熟 microRNA 摄入后对目标基因的转录后调控以及木虱幼虫发育障碍。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-25 DOI: 10.1111/imb.12949
Rutwik Bardapurkar, Gauri Binayak, Sagar Pandit
{"title":"Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion.","authors":"Rutwik Bardapurkar, Gauri Binayak, Sagar Pandit","doi":"10.1111/imb.12949","DOIUrl":"https://doi.org/10.1111/imb.12949","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi-based mite control. 破坏者 Varroa 的唾液腺转录组揭示了基于 RNAi 的螨虫控制的合适目标。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-22 DOI: 10.1111/imb.12945
Andrea Becchimanzi, Alfonso Cacace, Martina Parziale, Giovanna De Leva, Sergio Iacopino, Giovanni Jesu, Ilaria Di Lelio, Virgilio Stillittano, Emilio Caprio, Francesco Pennacchio
{"title":"The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi-based mite control.","authors":"Andrea Becchimanzi, Alfonso Cacace, Martina Parziale, Giovanna De Leva, Sergio Iacopino, Giovanni Jesu, Ilaria Di Lelio, Virgilio Stillittano, Emilio Caprio, Francesco Pennacchio","doi":"10.1111/imb.12945","DOIUrl":"https://doi.org/10.1111/imb.12945","url":null,"abstract":"<p><p>The mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dramatic impact on beekeeping and is one of the main causes of honey bee colony losses. This ectoparasite feeds on honey bees' liquid tissues, through a wound created on the host integument, determining weight loss and a reduction of lifespan, as well as the transmission of viral pathogens. However, despite its importance, the mite feeding strategy and the host regulation role by the salivary secretions have been poorly explored. Here, we contribute to fill this gap by identifying the salivary components of V. destructor, to study their functional importance for mite feeding and survival. The differential expression analysis identified 30 salivary gland genes encoding putatively secreted proteins, among which only 15 were found to be functionally annotated. These latter include proteins with putative anti-bacterial, anti-fungal, cytolytic, digestive and immunosuppressive function. The three most highly transcribed genes, coding for a chitin-binding domain protein, a Kazal domain serine protease inhibitor and a papain-like cysteine protease were selected to study their functional importance by reverse genetics. Knockdown (90%-99%) by RNA interference (RNAi) of the transcript of a chitin-binding domain protein, likely interfering with the immune reaction to facilitate mite feeding, was associated with a 40%-50% decrease of mite survival. This work expands our knowledge of the host regulation and nutritional exploitation strategies adopted by ectoparasites of arthropods and allows the identification of potential targets for RNAi, paving the way towards the development of new strategies for Varroa mite control.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
'Drifting' Buchnera genomes track the microevolutionary trajectories of their aphid hosts. 漂移的 "布赫纳拉基因组追踪着蚜虫宿主的微进化轨迹。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-19 DOI: 10.1111/imb.12946
Joshua A Thia, Dongwu Zhan, Katie Robinson, Paul A Umina, Ary A Hoffmann, Qiong Yang
{"title":"'Drifting' Buchnera genomes track the microevolutionary trajectories of their aphid hosts.","authors":"Joshua A Thia, Dongwu Zhan, Katie Robinson, Paul A Umina, Ary A Hoffmann, Qiong Yang","doi":"10.1111/imb.12946","DOIUrl":"https://doi.org/10.1111/imb.12946","url":null,"abstract":"<p><p>Evolution of Buchnera-aphid host symbioses is often studied among species at macroevolutionary scales. Investigations within species offer a different perspective about how eco-evolutionary processes shape patterns of genetic variation at microevolutionary scales. Our study leverages new and publicly available whole-genome sequencing data to study Buchnera-aphid host evolution in Myzus persicae, the peach potato aphid, a globally invasive and polyphagous pest. Across 43 different asexual, clonally reproducing isofemale strains, we examined patterns of genomic covariation between Buchnera and their aphid host and considered the distribution of mutations in protein-coding regions of the Buchnera genome. We found Buchnera polymorphisms within aphid strains, suggesting the presence of genetically different Buchnera strains within the same clonal lineage. Genetic distance between pairs of Buchnera samples was positively correlated to genetic distance between their aphid hosts, indicating shared evolutionary histories. However, there was no segregation of genetic variation for both M. persicae and Buchnera with plant host (Brassicaceae and non-tobacco Solanaceae) and no associations between genetic and geographic distance at global or regional spatial scales. Abundance patterns of non-synonymous mutations were similar to synonymous mutations in the Buchnera genome, and both mutation classes had similar site frequency spectra. We hypothesize that a predominance of neutral processes results in the Buchnera of M. persicae to simply 'drift' with the evolutionary trajectory of their aphid hosts. Our study presents a unique microevolutionary characterization of Buchnera-aphid host genomic covariation across multiple aphid clones. This provides a new perspective on the eco-evolutionary processes generating and maintaining polymorphisms in a major pest aphid species and its obligate primary endosymbiont.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of epigenetics in insects in changing environments 表观遗传学在不断变化的环境中对昆虫的作用。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-18 DOI: 10.1111/imb.12947
Juan Du, Michael A. D. Goodisman
{"title":"The role of epigenetics in insects in changing environments","authors":"Juan Du,&nbsp;Michael A. D. Goodisman","doi":"10.1111/imb.12947","DOIUrl":"10.1111/imb.12947","url":null,"abstract":"&lt;p&gt;The special issue of Insect Molecular Biology on ‘The role of epigenetics in insects in changing environments’ has arrived. The field of epigenetics is concerned with how different cellular phenotypes arise from the same genotype (Nicoglou &amp; Merlin, &lt;span&gt;2017&lt;/span&gt;). Understanding the nature and operation of epigenetic information is of great contemporary importance and interest (Allis &amp; Jenuwein, &lt;span&gt;2016&lt;/span&gt;; Cavalli &amp; Heard, &lt;span&gt;2019&lt;/span&gt;). Epigenetic information serves as a molecular intermediate that helps translate environmental signals received by the cell into changes in gene expression that allow the cell, and consequently, the organism, to produce a phenotype better suited to its surroundings. Epigenetic information affects gene function, can be passed on through cell divisions and impacts evolutionary processes (Fitz-James &amp; Cavalli, &lt;span&gt;2022&lt;/span&gt;; Yi &amp; Goodisman, &lt;span&gt;2021&lt;/span&gt;). Two of the most important epigenetic information systems are the methylation of DNA and the modification of histone proteins, both of which may affect gene expression in eukaryotic systems (Almouzni &amp; Cedar, &lt;span&gt;2016&lt;/span&gt;).&lt;/p&gt;&lt;p&gt;Insects constitute the majority of animal species on Earth and display remarkable interspecific and intraspecific phenotypic diversity. This diversity arises, in part, from the operation of epigenetic information (Glastad et al., &lt;span&gt;2019&lt;/span&gt;). Epigenetic information is believed to play a significant role in enabling insects to develop phenotypes appropriate to the environment (Duncan et al., &lt;span&gt;2022&lt;/span&gt;; Villagra &amp; Frías-Lasserre, &lt;span&gt;2020&lt;/span&gt;). Insects show interesting variation in epigenetic systems, are important ecologically and economically and are amenable to experimentation (Verlinden, &lt;span&gt;2017&lt;/span&gt;). Thus, insects have emerged as key systems for studying the function of epigenetic information. In this special issue, we present nine papers investigating a diversity of insect species that cover topics on epigenetic regulation during development, under conditions of environmental stress and across generations.&lt;/p&gt;&lt;p&gt;A good entrée to this special issue is the review by Maleszka (&lt;span&gt;2024&lt;/span&gt;). This ‘reminiscence’ uses the historically important benchmark of the sequencing of the honeybee genome as a jumping off point to consider the state of insect molecular biology, in general, and insect epigenetics, in particular. Maleszka discusses how the field of social behaviour was advanced by the sequencing of the honeybee genome. He also promotes the idea of metabolo-epigenetics, which considers how energy metabolites influence epigenetic regulation. Maleszka continues by discussing the epigenomic revolution, whereby the epigenetic state of the entire genome can now be assessed. He concludes by noting that researchers should focus on the idea that ‘epigenetics is about bridging the gap between the genotype and the phenotype’. We hope that the articles provide","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"429-431"},"PeriodicalIF":2.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster 幼年激素诱导的微RNA miR-iab-8调控黑腹果蝇的脂质平衡和蜕变
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-15 DOI: 10.1111/imb.12944
Qianyu He, Shanshan Chen, Tianlan Hou, Jinxia Chen
{"title":"Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster","authors":"Qianyu He,&nbsp;Shanshan Chen,&nbsp;Tianlan Hou,&nbsp;Jinxia Chen","doi":"10.1111/imb.12944","DOIUrl":"10.1111/imb.12944","url":null,"abstract":"<p>Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with <i>Drosophila</i> genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"792-805"},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens 通过 ChIP-seq 在全基因组范围内鉴定 PAR 结构域蛋白 1 (PDP1) 的靶标,发现了对库蚊双羽特异性特征的调控。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-11 DOI: 10.1111/imb.12943
Prabin Dhungana, Xueyan Wei, Megan E. Meuti, Cheolho Sim
{"title":"Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens","authors":"Prabin Dhungana,&nbsp;Xueyan Wei,&nbsp;Megan E. Meuti,&nbsp;Cheolho Sim","doi":"10.1111/imb.12943","DOIUrl":"10.1111/imb.12943","url":null,"abstract":"<p>Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, <i>Culex pipiens</i>, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"777-791"},"PeriodicalIF":2.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective target genes for RNA interference-based management of the cabbage stem flea beetle. 基于 RNA 干扰管理甘蓝茎跳甲的有效目标基因。
IF 2.3 2区 农林科学
Insect Molecular Biology Pub Date : 2024-07-06 DOI: 10.1111/imb.12942
Doga Cedden, Gözde Güney, Xavier Debaisieux, Stefan Scholten, Michael Rostás, Gregor Bucher
{"title":"Effective target genes for RNA interference-based management of the cabbage stem flea beetle.","authors":"Doga Cedden, Gözde Güney, Xavier Debaisieux, Stefan Scholten, Michael Rostás, Gregor Bucher","doi":"10.1111/imb.12942","DOIUrl":"https://doi.org/10.1111/imb.12942","url":null,"abstract":"<p><p>The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. Gene expression measurements confirmed target gene silencing and dose-response studies revealed LD<sub>50</sub> values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, for example, beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信