Xiaolong Liu, Xin Wang, Qi Zhang, Longji Ze, Hainan Zhang, Min Lu
{"title":"Knockdown of tyrosine hydroxylase gene affects larval survival, pupation and adult eclosion in Plagiodera versicolora.","authors":"Xiaolong Liu, Xin Wang, Qi Zhang, Longji Ze, Hainan Zhang, Min Lu","doi":"10.1111/imb.12967","DOIUrl":"https://doi.org/10.1111/imb.12967","url":null,"abstract":"<p><p>In insects, tyrosine hydroxylase (TH) plays essential roles in cuticle tanning and cuticle pigmentation. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest in salicaceous trees worldwide. However, the function of PverTH in P. versicolora is still unknown. In this study, we obtained a PverTH gene from transcriptome analysis. The expression analysis of PverTH showed that the highest expression was found in epidermis of larvae. In this study, we used RNA interference (RNAi) technology to knockdown the PverTH gene. The results showed that ingestion of dsTH led to cuticle coloration became lighter in larvae, pupae and adults. Knockdown of PverTH gene inhibited larval growth, and consequently caused higher mortality. In addition, RNAi of TH disrupted the cuticle tanning, caused lower pupation rate, lower eclosion rate and higher deformity rate. This study indicates that PverTH is vital for the cuticular pigments and cuticle tanning. Moreover, this research suggested that the development of PverTH gene as a potential target gene to control P. versicolora.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quest for the best target genes for RNAi-mediated pest control.","authors":"Doga Cedden, Gregor Bucher","doi":"10.1111/imb.12966","DOIUrl":"https://doi.org/10.1111/imb.12966","url":null,"abstract":"<p><p>RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera.","authors":"Bertrand Fouks,Katelyn J Miller,Caitlin Ross,Corbin Jones,Olav Rueppell","doi":"10.1111/imb.12961","DOIUrl":"https://doi.org/10.1111/imb.12961","url":null,"abstract":"Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"12 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob N Dayton,Tammy T Tran,Elisa Saint-Denis,Erik B Dopman
{"title":"Efficient CRISPR/Cas9-mediated genome editing in the European corn borer, Ostrinia nubilalis.","authors":"Jacob N Dayton,Tammy T Tran,Elisa Saint-Denis,Erik B Dopman","doi":"10.1111/imb.12959","DOIUrl":"https://doi.org/10.1111/imb.12959","url":null,"abstract":"The European corn borer (Ostrinia nubilalis) is an agricultural pest and burgeoning model for research on speciation, seasonal adaptation and insect resistance management. Although previous work in O. nubilalis has identified genes associated with differences in life cycle, reproduction, and resistance to Bt toxins, the general lack of a robust gene-editing protocol for O. nubilalis has been a barrier to functional validation of candidate genes. Here, we demonstrate an efficient and practical methodology for heritable gene mutagenesis in O. nubilalis using the CRISPR/Cas9 genome editing system. Precise loss-of-function (LOF) mutations were generated at two circadian clock genes, period (per) and pigment-dispersing factor receptor (pdfr), and a developmental gene, prothoracicotropic hormone (ptth). Precluding the need for a visible genetic marker, gene-editing efficiency remained high across different single guide RNAs (sgRNA) and germline transmission of mutations to F1 offspring approached 100%. When single or dual sgRNAs were injected at a high concentration, gene-specific phenotypic differences in behaviour and development were identified in F0 mutants. Specifically, F0 gene mutants demonstrated that PER, but not PDFR, is essential for normal timing of eclosion. PTTH F0 mutants were significantly heavier and exhibited a higher incidence of diapause. This work will accelerate future studies of gene function in O. nubilalis and facilitate the development of similar screens in other Lepidopteran and non-model insects.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"2 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spraying dsRNA with chitosan formulation improves control of the western flower thrips, Frankliniella occidentalis, in a greenhouse.","authors":"Falguni Khan, Gahyeon Jin, Yonggyun Kim","doi":"10.1111/imb.12954","DOIUrl":"https://doi.org/10.1111/imb.12954","url":null,"abstract":"<p><p>The western flower thrips, Frankliniella occidentalis, is a serious pest causing both direct feeding damage and indirect harm by transmitting the tomato spotted wilt virus. A spraying double-stranded RNA (dsRNA) targeted at the vacuolar-type ATPase (vATPase) gene was developed and demonstrated high insecticidal activity in the laboratory but less effective in field applications. To improve control efficacy under field conditions, three strategies were explored in this study. First, to identify a more efficient RNA interference (RNAi) target, dsRNA specific to the Snf7 gene was tested alongside dsRNA targeting vATPase, and both were found to be similarly effective in controlling the thrips. Second, to elucidate the factors contributing to dsRNA resistance, dsRNA-degrading enzymes were annotated and their physiological roles in diminishing RNAi efficacy were investigated. Third, to suppress the dsRNA degradation from the dsRNase activities and protect it in field conditions, the dsRNA was encapsulated with chitosan. This formulation enhanced the dsRNA's resistance to environmental stressors such as ultraviolet light and the digestive enzymes in the thrips' gut. Additionally, the chitosan formulation specifically increased the RNAi efficacy, likely by facilitating more efficient entry into the target cells, thus bolstering the insecticidal activity of the dsRNA. The formulated dsRNA was applied on F. occidentalis infesting the hot peppers in a greenhouse at a concentration of 500 ppm, demonstrating an 82.4% control efficacy compared with 59.2% control efficacy observed with the application of naked dsRNA. This study further demonstrated an enhancement in the spectrum of control by combining dsRNAs specific to three distinct thrips species, while the mixture showed no adverse effects on non-target insects, such as the lepidopteran Spodoptera exigua. Collectively, these findings reveal that the chitosan formulation of dsRNA not only improves control efficacy under field conditions but also broadens the control spectrum against three different thrips pests.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda M. Norton, Gabriele Buchmann, Alyson Ashe, Owen T. Watson, Madeleine Beekman, Emily J. Remnant
{"title":"Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts","authors":"Amanda M. Norton, Gabriele Buchmann, Alyson Ashe, Owen T. Watson, Madeleine Beekman, Emily J. Remnant","doi":"10.1111/imb.12948","DOIUrl":"https://doi.org/10.1111/imb.12948","url":null,"abstract":"<jats:italic>Iflavirus aladeformis</jats:italic> (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with <jats:italic>Varroa destructor</jats:italic> Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (<jats:italic>Apis mellifera L.</jats:italic> [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV‐A and DWV‐B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT‐qPCR) and analysed small RNA after experimental injection with DWV‐A and DWV‐B. We found no evidence that DWV‐A and DWV‐B elicit different immune responses in honey bees. RNA interference genes were up‐regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, <jats:italic>Triatovirus nigereginacellulae</jats:italic> (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus‐derived Piwi‐interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of <jats:italic>V</jats:italic>. <jats:italic>destructor</jats:italic>, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"179 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Becchimanzi, Alfonso Cacace, Martina Parziale, Giovanna De Leva, Sergio Iacopino, Giovanni Jesu, Ilaria Di Lelio, Virgilio Stillittano, Emilio Caprio, Francesco Pennacchio
{"title":"The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi-based mite control.","authors":"Andrea Becchimanzi, Alfonso Cacace, Martina Parziale, Giovanna De Leva, Sergio Iacopino, Giovanni Jesu, Ilaria Di Lelio, Virgilio Stillittano, Emilio Caprio, Francesco Pennacchio","doi":"10.1111/imb.12945","DOIUrl":"https://doi.org/10.1111/imb.12945","url":null,"abstract":"<p><p>The mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dramatic impact on beekeeping and is one of the main causes of honey bee colony losses. This ectoparasite feeds on honey bees' liquid tissues, through a wound created on the host integument, determining weight loss and a reduction of lifespan, as well as the transmission of viral pathogens. However, despite its importance, the mite feeding strategy and the host regulation role by the salivary secretions have been poorly explored. Here, we contribute to fill this gap by identifying the salivary components of V. destructor, to study their functional importance for mite feeding and survival. The differential expression analysis identified 30 salivary gland genes encoding putatively secreted proteins, among which only 15 were found to be functionally annotated. These latter include proteins with putative anti-bacterial, anti-fungal, cytolytic, digestive and immunosuppressive function. The three most highly transcribed genes, coding for a chitin-binding domain protein, a Kazal domain serine protease inhibitor and a papain-like cysteine protease were selected to study their functional importance by reverse genetics. Knockdown (90%-99%) by RNA interference (RNAi) of the transcript of a chitin-binding domain protein, likely interfering with the immune reaction to facilitate mite feeding, was associated with a 40%-50% decrease of mite survival. This work expands our knowledge of the host regulation and nutritional exploitation strategies adopted by ectoparasites of arthropods and allows the identification of potential targets for RNAi, paving the way towards the development of new strategies for Varroa mite control.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of epigenetics in insects in changing environments","authors":"Juan Du, Michael A. D. Goodisman","doi":"10.1111/imb.12947","DOIUrl":"10.1111/imb.12947","url":null,"abstract":"<p>The special issue of Insect Molecular Biology on ‘The role of epigenetics in insects in changing environments’ has arrived. The field of epigenetics is concerned with how different cellular phenotypes arise from the same genotype (Nicoglou & Merlin, <span>2017</span>). Understanding the nature and operation of epigenetic information is of great contemporary importance and interest (Allis & Jenuwein, <span>2016</span>; Cavalli & Heard, <span>2019</span>). Epigenetic information serves as a molecular intermediate that helps translate environmental signals received by the cell into changes in gene expression that allow the cell, and consequently, the organism, to produce a phenotype better suited to its surroundings. Epigenetic information affects gene function, can be passed on through cell divisions and impacts evolutionary processes (Fitz-James & Cavalli, <span>2022</span>; Yi & Goodisman, <span>2021</span>). Two of the most important epigenetic information systems are the methylation of DNA and the modification of histone proteins, both of which may affect gene expression in eukaryotic systems (Almouzni & Cedar, <span>2016</span>).</p><p>Insects constitute the majority of animal species on Earth and display remarkable interspecific and intraspecific phenotypic diversity. This diversity arises, in part, from the operation of epigenetic information (Glastad et al., <span>2019</span>). Epigenetic information is believed to play a significant role in enabling insects to develop phenotypes appropriate to the environment (Duncan et al., <span>2022</span>; Villagra & Frías-Lasserre, <span>2020</span>). Insects show interesting variation in epigenetic systems, are important ecologically and economically and are amenable to experimentation (Verlinden, <span>2017</span>). Thus, insects have emerged as key systems for studying the function of epigenetic information. In this special issue, we present nine papers investigating a diversity of insect species that cover topics on epigenetic regulation during development, under conditions of environmental stress and across generations.</p><p>A good entrée to this special issue is the review by Maleszka (<span>2024</span>). This ‘reminiscence’ uses the historically important benchmark of the sequencing of the honeybee genome as a jumping off point to consider the state of insect molecular biology, in general, and insect epigenetics, in particular. Maleszka discusses how the field of social behaviour was advanced by the sequencing of the honeybee genome. He also promotes the idea of metabolo-epigenetics, which considers how energy metabolites influence epigenetic regulation. Maleszka continues by discussing the epigenomic revolution, whereby the epigenetic state of the entire genome can now be assessed. He concludes by noting that researchers should focus on the idea that ‘epigenetics is about bridging the gap between the genotype and the phenotype’. We hope that the articles provide","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 5","pages":"429-431"},"PeriodicalIF":2.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12947","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster","authors":"Qianyu He, Shanshan Chen, Tianlan Hou, Jinxia Chen","doi":"10.1111/imb.12944","DOIUrl":"10.1111/imb.12944","url":null,"abstract":"<p>Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with <i>Drosophila</i> genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"792-805"},"PeriodicalIF":2.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prabin Dhungana, Xueyan Wei, Megan E. Meuti, Cheolho Sim
{"title":"Genome-wide identification of PAR domain protein 1 (PDP1) targets through ChIP-seq reveals the regulation of diapause-specific characteristics in Culex pipiens","authors":"Prabin Dhungana, Xueyan Wei, Megan E. Meuti, Cheolho Sim","doi":"10.1111/imb.12943","DOIUrl":"10.1111/imb.12943","url":null,"abstract":"<p>Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, <i>Culex pipiens</i>, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 6","pages":"777-791"},"PeriodicalIF":2.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imb.12943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}