{"title":"Dual oxidase is essential for moulting, hatching and feeding in the brown planthopper.","authors":"Jinjin Ren, Shuai Tao, Xu Cheng, Yanyuan Bao","doi":"10.1111/imb.12995","DOIUrl":null,"url":null,"abstract":"<p><p>Dual oxidase (Duox) is well-known for its role in immunity and tyrosine cross-linking activity across various biological processes from mammals to holometabolous insects. Nevertheless, its function in hemimetabolous insects remains poorly understood. In this study, we explored the physiological roles of the Duox gene in a hemimetabolous insect, the brown planthopper, one of the most devastating rice pests. A comprehensive analysis of the spatiotemporal expression pattern of the Duox gene was conducted. RNA interference (RNAi)-mediated silencing of the Duox gene led to moulting defects in nymphs, wing abnormalities and impaired feeding in adults and reduced hatchability in eggs. Additionally, Duox knockdown significantly reduced hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in premoulting nymphs and female ovaries. These findings highlight the indispensable role of Duox in moulting, hatching, wing expansion and feeding behaviours in the brown planthopper, shedding light on the relationship between H<sub>2</sub>O<sub>2</sub> production and cuticle structural stability.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12995","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual oxidase (Duox) is well-known for its role in immunity and tyrosine cross-linking activity across various biological processes from mammals to holometabolous insects. Nevertheless, its function in hemimetabolous insects remains poorly understood. In this study, we explored the physiological roles of the Duox gene in a hemimetabolous insect, the brown planthopper, one of the most devastating rice pests. A comprehensive analysis of the spatiotemporal expression pattern of the Duox gene was conducted. RNA interference (RNAi)-mediated silencing of the Duox gene led to moulting defects in nymphs, wing abnormalities and impaired feeding in adults and reduced hatchability in eggs. Additionally, Duox knockdown significantly reduced hydrogen peroxide (H2O2) levels in premoulting nymphs and female ovaries. These findings highlight the indispensable role of Duox in moulting, hatching, wing expansion and feeding behaviours in the brown planthopper, shedding light on the relationship between H2O2 production and cuticle structural stability.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).