The genome-wide characterisation of cold shock proteins and prominent roles involved in cold response by configuring metabolic pathways in Haemaphysalis longicornis.
Tingwei Pei, Ziwen Gao, Zihao Wang, Han Wang, Chuks F Nwanade, Ziyan Bing, Lu Li, Xiujie Liang, Yuchao Zhang, Yunsheng Tang, Xiaoduan Fang, Zhijun Yu
{"title":"The genome-wide characterisation of cold shock proteins and prominent roles involved in cold response by configuring metabolic pathways in Haemaphysalis longicornis.","authors":"Tingwei Pei, Ziwen Gao, Zihao Wang, Han Wang, Chuks F Nwanade, Ziyan Bing, Lu Li, Xiujie Liang, Yuchao Zhang, Yunsheng Tang, Xiaoduan Fang, Zhijun Yu","doi":"10.1111/imb.12993","DOIUrl":null,"url":null,"abstract":"<p><p>Cold shock proteins are relatively conserved in evolution and are involved in regulating various life activities, including cell proliferation, nutritional stress and cold adaptation. However, information about the function and regulation of cold shock proteins in ticks during cold response remains meagre. In the present study, six cold shock protein genes were identified from the important vector tick Haemaphysalis longicornis, which were named as HlY-box1, HlY-box2, HlY-box3, HlY-box4, HlY-box5 and HlY-box6. Spatiotemporal expression dynamics revealed dynamic expressions varied significantly after low-temperature treatment, with different expression patterns observed over prolonged exposure periods. Then the function and regulation of cold shock protein genes during the cold response of H. longicornis were explored. RNA interference (RNAi) efficiently knocked down these genes, significantly increasing tick mortality under cold stress. Transcriptomic analysis following HlY-box4 knockdown identified 336 differentially expressed genes (DEGs), which were mainly annotated in the MAPK signalling pathway and metabolism pathway. Proteomic analysis identified 632 differentially expressed proteins associated with ATP-dependent chromatin remodelling, metabolic pathway, spliceosome, ribosome and nucleoplasmic transport pathways. The results highlight the critical roles of cold shock proteins (CSPs) in tick cold responses, primarily through regulating metabolic pathways, and provide a foundation for further exploration of their molecular mechanisms.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12993","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cold shock proteins are relatively conserved in evolution and are involved in regulating various life activities, including cell proliferation, nutritional stress and cold adaptation. However, information about the function and regulation of cold shock proteins in ticks during cold response remains meagre. In the present study, six cold shock protein genes were identified from the important vector tick Haemaphysalis longicornis, which were named as HlY-box1, HlY-box2, HlY-box3, HlY-box4, HlY-box5 and HlY-box6. Spatiotemporal expression dynamics revealed dynamic expressions varied significantly after low-temperature treatment, with different expression patterns observed over prolonged exposure periods. Then the function and regulation of cold shock protein genes during the cold response of H. longicornis were explored. RNA interference (RNAi) efficiently knocked down these genes, significantly increasing tick mortality under cold stress. Transcriptomic analysis following HlY-box4 knockdown identified 336 differentially expressed genes (DEGs), which were mainly annotated in the MAPK signalling pathway and metabolism pathway. Proteomic analysis identified 632 differentially expressed proteins associated with ATP-dependent chromatin remodelling, metabolic pathway, spliceosome, ribosome and nucleoplasmic transport pathways. The results highlight the critical roles of cold shock proteins (CSPs) in tick cold responses, primarily through regulating metabolic pathways, and provide a foundation for further exploration of their molecular mechanisms.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).