Mou-Zheng Jiang, Xiao-Xuan Hu, Xu-Dong Li, Qing Wang, Man-Yu Shi, Rui-Rui Cui, Guo-Qing Wei, Lei Wang
{"title":"Knockdown of BmorCPR67 gene disrupts prepupal-pupal transition of silkworm Bombyx mori by thinning the endocuticle.","authors":"Mou-Zheng Jiang, Xiao-Xuan Hu, Xu-Dong Li, Qing Wang, Man-Yu Shi, Rui-Rui Cui, Guo-Qing Wei, Lei Wang","doi":"10.1111/imb.12991","DOIUrl":null,"url":null,"abstract":"<p><p>The cuticle of insects serves as a crucial organ for preserving body composition, protecting against pathogen invasion, and retaining moisture in their bodies. Cuticular proteins (CPs) are the main constituents of insect cuticles and interact with chitin to form the cuticle's structural framework and mechanical properties. In this study, we investigated the role of a cuticular protein with R&R consensus (CPR), BmorCPR67, a member of the RR-2 subfamily, during the prepupal-to-pupal transition in Bombyx mori. The BmorCPR67 gene exhibited high expression levels during the prepupal stage, with the highest expression detected in the epidermis of the day-1 pupa in B. mori. The expression of the BmorCPR67 gene was induced by 20-hydroxyecdysone (20E). Chitin-binding assays indicated that the BmorCPR67 protein selectively binds to crystalline chitin and chitosan but not to amorphous chitin. Silencing the BmorCPR67 gene disrupted the moulting process from prepupa to pupa, resulting in silkworm mortality. Furthermore, the knockdown of BmorCPR67 altered the expression profiles of key genes involved in chitin metabolism. Notably, significant thinning of the endocuticle was observed 48-96 h after siRNA injection in BmorCPR67-silenced silkworms. These findings highlight the critical role of BmorCPR67 in cuticle development during the prepupal-to-pupal transition in B. mori, contributing to our understanding of the functions of CPs in insect metamorphosis.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12991","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cuticle of insects serves as a crucial organ for preserving body composition, protecting against pathogen invasion, and retaining moisture in their bodies. Cuticular proteins (CPs) are the main constituents of insect cuticles and interact with chitin to form the cuticle's structural framework and mechanical properties. In this study, we investigated the role of a cuticular protein with R&R consensus (CPR), BmorCPR67, a member of the RR-2 subfamily, during the prepupal-to-pupal transition in Bombyx mori. The BmorCPR67 gene exhibited high expression levels during the prepupal stage, with the highest expression detected in the epidermis of the day-1 pupa in B. mori. The expression of the BmorCPR67 gene was induced by 20-hydroxyecdysone (20E). Chitin-binding assays indicated that the BmorCPR67 protein selectively binds to crystalline chitin and chitosan but not to amorphous chitin. Silencing the BmorCPR67 gene disrupted the moulting process from prepupa to pupa, resulting in silkworm mortality. Furthermore, the knockdown of BmorCPR67 altered the expression profiles of key genes involved in chitin metabolism. Notably, significant thinning of the endocuticle was observed 48-96 h after siRNA injection in BmorCPR67-silenced silkworms. These findings highlight the critical role of BmorCPR67 in cuticle development during the prepupal-to-pupal transition in B. mori, contributing to our understanding of the functions of CPs in insect metamorphosis.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).