Miloš Bielčik, Ulrike E. Schlägel, Merlin Schäfer, Carlos A. Aguilar-Trigueros, Milica Lakovic, Moisés A. Sosa-Hernández, Edith C. Hammer, Florian Jeltsch, Matthias C. Rillig
{"title":"Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence","authors":"Miloš Bielčik, Ulrike E. Schlägel, Merlin Schäfer, Carlos A. Aguilar-Trigueros, Milica Lakovic, Moisés A. Sosa-Hernández, Edith C. Hammer, Florian Jeltsch, Matthias C. Rillig","doi":"10.1111/brv.13119","DOIUrl":"10.1111/brv.13119","url":null,"abstract":"<p>Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2211-2233"},"PeriodicalIF":11.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barbara Wrzesińska-Krupa, Aleksandra Obrępalska-Stęplowska
{"title":"Small non-coding satellite RNAs - the 'game changers' at the virus-host plant interaction?","authors":"Barbara Wrzesińska-Krupa, Aleksandra Obrępalska-Stęplowska","doi":"10.1111/brv.13125","DOIUrl":"https://doi.org/10.1111/brv.13125","url":null,"abstract":"<p><p>Satellite RNAs (satRNAs) are RNA molecules associated with many plant viruses and fully dependent on them for replication, encapsidation, and movement within the plant or transmission from plant to plant. Their classification is based on their length, functional protein-coding capacity, and RNA structure (whether linear or circular). They have been of interest for a long time as some of them, in particular systems, cause significant changes in the pathogenesis and epidemiology of plant viruses. The outcomes of how satRNAs affect pathogenesis depend on the components of the pathosystem: host plant species or variety, virus species or even strain, and the sequence of satRNA. These can be additionally affected by biotic and abiotic factors, for example, environmental conditions such as the presence of their vectors or ambient temperature. satRNAs may interfere with primary metabolism, signalling, plant defence [including post-transcriptional gene silencing (PTGS)], as well as the efficiency of virus transmission from plant to plant. In recent years, due to wider access to high-throughput technologies and the extension of studies on satRNAs to include the involvement of external factors in plant-virus-satRNA systems, we are gaining a broader view of the consequences of the presence of these small molecules in viral infections. This review presents the state of the art of satRNA interactions with the helper virus and host plant as well as the influence of satRNAs on the insect vector's behaviour. Moreover, areas requiring further research are identified and knowledge gaps indicated.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giulia Campli, Olga Volovych, Kenneth Kim, Werner P. Veldsman, Harriet B. Drage, Idan Sheizaf, Sinéad Lynch, Ariel D. Chipman, Allison C. Daley, Marc Robinson-Rechavi, Robert M. Waterhouse
{"title":"The moulting arthropod: a complete genetic toolkit review","authors":"Giulia Campli, Olga Volovych, Kenneth Kim, Werner P. Veldsman, Harriet B. Drage, Idan Sheizaf, Sinéad Lynch, Ariel D. Chipman, Allison C. Daley, Marc Robinson-Rechavi, Robert M. Waterhouse","doi":"10.1111/brv.13123","DOIUrl":"10.1111/brv.13123","url":null,"abstract":"<p>Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investig","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2338-2375"},"PeriodicalIF":11.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The challenging biogeography of the Juan Fernández Islands and Coast Range of central Chile explained by new models of East Pacific tectonics","authors":"Michael Heads, Patricio Saldivia","doi":"10.1111/brv.13121","DOIUrl":"10.1111/brv.13121","url":null,"abstract":"<div>\u0000 \u0000 <p>Biogeographers have often been puzzled by several unusual features in the Juan Fernández Islands (JFI) biota. These include the very high endemism density, multiple endemics that are older than the current islands, close biogeographic affinities with the central and West Pacific, and affinities with the diverse Coast Range of central Chile. We review aspects of biogeography in the JFI and the Coast Range in light of recent geological studies. These have examined the mantle below the East Pacific and South America, and have produced radical, new ideas on tectonic history. A long-lived, intraoceanic archipelago ~9000 km long is now thought to have existed in the East Pacific (passing between the JFI hotspot and mainland Chile) until the mid-Cretaceous. At this time, South America, which was moving westward with the opening of the Atlantic, collided with the archipelago. The assumption that the JFI biota is no older than its current islands is questionable, as taxa would have survived on prior islands produced at the JFI hotspot. We propose a new interpretation of evolution in the region based on tectonics rather than on island age and incorporating the following factors: the newly described East Pacific Archipelago; a long history for the JFI hotspot; metapopulation dynamics, including metapopulation vicariance; and formation of the Humboldt Current in the Cretaceous. The model accounts for many distinctive features of the JFI and Coast Range biota.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2274-2303"},"PeriodicalIF":11.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincent Stin, Ramiro Godoy-Diana, Xavier Bonnet, Anthony Herrel
{"title":"Form and function of anguilliform swimming","authors":"Vincent Stin, Ramiro Godoy-Diana, Xavier Bonnet, Anthony Herrel","doi":"10.1111/brv.13116","DOIUrl":"10.1111/brv.13116","url":null,"abstract":"<p>Anguilliform swimmers are long and narrow animals that propel themselves by undulating their bodies. Observations in nature and recent investigations suggest that anguilliform swimming is highly efficient. However, understanding the underlying reasons for the efficiency of this type of locomotion requires interdisciplinary studies spanning from biology to hydrodynamics. Regrettably, these different fields are rarely discussed together, which hinders our ability to understand the repeated evolution of this swimming mode in vertebrates. This review compiles the current knowledge of the anatomical features that drive anguilliform swimming, compares the resulting kinematics across a wide range of anguilliform swimmers, and describes the resulting hydrodynamic interactions using data from both <i>in vivo</i> experiments and computational studies.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2190-2210"},"PeriodicalIF":11.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prey specificity of predatory venoms","authors":"Ondřej Michálek, Glenn F. King, Stano Pekár","doi":"10.1111/brv.13120","DOIUrl":"10.1111/brv.13120","url":null,"abstract":"<p>Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2253-2273"},"PeriodicalIF":11.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert Poulin, Priscila M. Salloum, Jerusha Bennett
{"title":"Evolution of parasites in the Anthropocene: new pressures, new adaptive directions","authors":"Robert Poulin, Priscila M. Salloum, Jerusha Bennett","doi":"10.1111/brv.13118","DOIUrl":"10.1111/brv.13118","url":null,"abstract":"<p>The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures. Here, we synthesise current knowledge on human-induced evolution in eukaryotic parasites of animals, and present a multidisciplinary framework for its study and monitoring. Parasites generally have short generation times and huge fecundity, features that predispose them for rapid evolution. We begin by reviewing evidence that parasites often have substantial standing genetic variation, and examples of their rapid evolution both under conditions of livestock production and in serial passage experiments. We then present a two-step conceptual overview of the causal chain linking anthropogenic impacts to parasite evolution. First, we review the major anthropogenic factors impacting parasites, and identify the selective pressures they exert on parasites through increased mortality of either infective stages or adult parasites, or through changes in host density, quality or immunity. Second, we discuss what new phenotypic traits are likely to be favoured by the new selective pressures resulting from altered parasite mortality or host changes; we focus mostly on parasite virulence and basic life-history traits, as these most directly influence the transmission success of parasites and the pathology they induce. To illustrate the kinds of evolutionary changes in parasites anticipated in the Anthropocene, we present a few scenarios, either already documented or hypothetical but plausible, involving parasite taxa in livestock, aquaculture and natural systems. Finally, we offer several approaches for investigations and real-time monitoring of rapid, human-induced evolution in parasites, ranging from controlled experiments to the use of state-of-the-art genomic tools. The implications of fast-evolving parasites in the Anthropocene for disease emergence and the dynamics of infections in domestic animals and wildlife are concerning. Broader recognition that it is not only the conditions for parasite transmission that are changing, but the parasites themselves, is needed to meet better the challenges ahead.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2234-2252"},"PeriodicalIF":11.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro Pollo, Malgorzata Lagisz, Yefeng Yang, Antica Culina, Shinichi Nakagawa
{"title":"Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis","authors":"Pietro Pollo, Malgorzata Lagisz, Yefeng Yang, Antica Culina, Shinichi Nakagawa","doi":"10.1111/brv.13117","DOIUrl":"10.1111/brv.13117","url":null,"abstract":"<p>Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2134-2175"},"PeriodicalIF":11.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliani Giselli Prestes, Laís Carneiro, Natali Oliva Roman Miiller, Ananda Karla Alves Neundorf, Clemerson Richard Pedroso, Raul Rennó Braga, Ronaldo Sousa, Jean Ricardo Simões Vitule
{"title":"A systematic review of invasive non-native freshwater bivalves","authors":"Juliani Giselli Prestes, Laís Carneiro, Natali Oliva Roman Miiller, Ananda Karla Alves Neundorf, Clemerson Richard Pedroso, Raul Rennó Braga, Ronaldo Sousa, Jean Ricardo Simões Vitule","doi":"10.1111/brv.13113","DOIUrl":"10.1111/brv.13113","url":null,"abstract":"<div>\u0000 \u0000 <p>The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species <i>Corbicula fluminea</i> and <i>Dreissena polymorpha</i>, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2082-2107"},"PeriodicalIF":11.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Woody encroachment: social–ecological impacts and sustainable management","authors":"Jingyi Ding, David J. Eldridge","doi":"10.1111/brv.13104","DOIUrl":"10.1111/brv.13104","url":null,"abstract":"<div>\u0000 \u0000 <p>Woody plants are encroaching across terrestrial ecosystems globally, and this has dramatic effects on how these systems function and the livelihoods of producers who rely on the land to support livestock production. Consequently, the removal of woody plants is promoted widely in the belief that it will reinstate former grasslands or open savanna. Despite this popular management approach to encroachment, we still have a relatively poor understanding of the effects of removal on society, and of alternative management practices that could balance the competing needs of pastoral production, biodiversity conservation and cultural values. This information is essential for maintaining both ecological and societal benefits in encroached systems under predicted future climate changes. In this review, we provide a comprehensive synthesis of the social–ecological perspectives of woody encroachment based on recent studies and global meta-analyses by assessing the ecological impacts of encroachment and its effects on sustainable development goals (SDGs) when woody plants are retained and when they are removed. We propose a working definition of woody encroachment based on species- and community-level characteristics; such a definition is needed to evaluate accurately the effects of encroachment. We show that encroachment is a natural process of succession rather than a sign of degradation, with encroachment resulting in an overall 8% increase in ecosystem multifunctionality. Removing woody plants can increase herbaceous plant richness, biomass and cover, but at the expense of biocrust cover. The effectiveness of woody plant removal depends on plant identity, and where, when and how they are removed. Under current management practices, either removal or retention of woody plants can induce trade-offs among ecosystem services, with no management practice maximising all SDGs [e.g. SDG2 (end hunger), SDG13 (climate change), SDG 15 (combat desertification)]. Given that encroachment of woody plants is likely to increase under future predicted hotter and drier climates, alternative management options such as carbon farming and ecotourism could be effective land uses for areas affected by encroachment.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1909-1926"},"PeriodicalIF":11.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}