{"title":"Models of bee responses to land use and land cover changes in agricultural landscapes – a review and research agenda","authors":"Abdelhak Rouabah, Chantal Rabolin-Meinrad, Camille Gay, Olivier Therond","doi":"10.1111/brv.13109","DOIUrl":"10.1111/brv.13109","url":null,"abstract":"<div>\u0000 \u0000 <p>Predictive modelling tools can be used to support the design of agricultural landscapes to promote pollinator biodiversity and pollination services. Despite the proliferation of such modelling tools in recent decades, there remains a gap in synthesising their main characteristics and representation capacities. Here, we reviewed 42 studies that developed non-correlative models to explore the impact of land use and land cover changes on bee populations, and synthesised information about the modelled systems, modelling approaches, and key model characteristics like spatiotemporal extent and resolution. Various modelling approaches are employed to predict the biodiversity of bees and the pollination services they provide, with a prevalence of models focusing on wild populations compared to managed ones. Of these models, landscape indicators and distance decay models are relatively simple, with few parameters. They allow mapping bee visitation probabilities using basic land cover data and considering bee foraging ranges. Conversely, mechanistic or agent-based models delineate, with varying degrees of complexity, a multitude of processes that characterise, among others, the foraging behaviour and population dynamics of bees. The reviewed models collectively encompass 38 ecological, agronomic, and economic processes, producing various outputs including bee abundance, habitat visitation rate, and crop yield. To advance the development of predictive modelling tools aimed at fostering pollinator biodiversity and pollination services in agricultural landscapes, we highlight future avenues for increasing biophysical realism in models predicting the impact of land use and land cover changes on bees. Additionally, we address the challenges associated with balancing model complexity and practical usability.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2003-2021"},"PeriodicalIF":11.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virginia Panara, Zuzana Varaliová, Jörg Wilting, Katarzyna Koltowska, Michael Jeltsch
{"title":"The relationship between the secondary vascular system and the lymphatic vascular system in fish","authors":"Virginia Panara, Zuzana Varaliová, Jörg Wilting, Katarzyna Koltowska, Michael Jeltsch","doi":"10.1111/brv.13114","DOIUrl":"10.1111/brv.13114","url":null,"abstract":"<p>New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries <i>via</i> specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the ‘fish lymphatics’ are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics <i>versus</i> the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2108-2133"},"PeriodicalIF":11.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izzy C. Tiddy, Amelia Munson, Daphne Cortese, Michael M. Webster, Shaun S. Killen
{"title":"Impacts of climate-related stressors on social group cohesion and individual sociability in fish","authors":"Izzy C. Tiddy, Amelia Munson, Daphne Cortese, Michael M. Webster, Shaun S. Killen","doi":"10.1111/brv.13111","DOIUrl":"10.1111/brv.13111","url":null,"abstract":"<p>Group-living in animals comes with a number of benefits associated with predator avoidance, foraging, and reproduction. A large proportion of fish species display grouping behaviour. Fish may also be particularly vulnerable to climate-related stressors including thermal variation, hypoxia, and acidification. As climate-related stressors are expected to increase in magnitude and frequency, any effects on fish behaviour may be increased and affect the ability of fish species to cope with changing conditions. Here we conduct a systematic review of the effects of temperature, hypoxia, and acidification on individual sociability and group cohesion in shoaling and schooling fishes. Searches of the published and grey literature were carried out, and studies were included or excluded based on selection criteria. Data from studies were then included in a meta-analysis to examine broad patterns of effects of climate-related stressors in the literature. Evidence was found for a reduction in group cohesion at low oxygen levels, which was stronger in smaller groups. While several studies reported effects of temperature and acidification, there was no consistent effect of either stressor on sociability or cohesion. There was some evidence that marine fishes are more strongly negatively affected by acidification compared with freshwater species, but results are similarly inconsistent and more studies are required. Additional studies of two or more stressors in combination are also needed, although one study found reduced sociability following exposure to acidification and high temperatures. Overall, there is some evidence that hypoxia, and potentially other climate-related environmental changes, impact sociability and group cohesion in fishes. This may reduce survival and adaptability in shoaling and schooling species and have further ecological implications for aquatic systems. However, this synthesis mainly highlights the need for more empirical studies examining the effects of climate-related factors on social behaviour in fishes.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2035-2059"},"PeriodicalIF":11.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141464518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José María Fernández-Palacios, Rüdiger Otto, Jorge Capelo, Juli Caujapé-Castells, Lea de Nascimento, Maria Cristina Duarte, Rui B. Elias, Carlos García-Verdugo, Miguel Menezes de Sequeira, Frédéric Médail, Agustín Naranjo-Cigala, Jairo Patiño, Jonathan Price, Maria M. Romeiras, Lázaro Sánchez-Pinto, Robert J. Whittaker
{"title":"In defence of the entity of Macaronesia as a biogeographical region","authors":"José María Fernández-Palacios, Rüdiger Otto, Jorge Capelo, Juli Caujapé-Castells, Lea de Nascimento, Maria Cristina Duarte, Rui B. Elias, Carlos García-Verdugo, Miguel Menezes de Sequeira, Frédéric Médail, Agustín Naranjo-Cigala, Jairo Patiño, Jonathan Price, Maria M. Romeiras, Lázaro Sánchez-Pinto, Robert J. Whittaker","doi":"10.1111/brv.13112","DOIUrl":"10.1111/brv.13112","url":null,"abstract":"<p>Since its coinage <i>ca</i>. 1850 AD by Philip Barker Webb, the biogeographical region of Macaronesia, consisting of the North Atlantic volcanic archipelagos of the Azores, Madeira with the tiny Selvagens, the Canaries and Cabo Verde, and for some authors different continental coastal strips, has been under dispute. Herein, after a brief introduction on the terminology and purpose of regionalism, we recover the origins of the Macaronesia name, concept and geographical adscription, as well as its biogeographical implications and how different authors have positioned themselves, using distinct terrestrial or marine floristic and/or faunistic taxa distributions and relationships for accepting or rejecting the existence of this biogeographical region. Four main issues related to Macaronesia are thoroughly discussed: (<i>i</i>) its independence from the Mediterranean phytogeographical region; (<i>ii</i>) discrepancies according to different taxa analysed; (<i>iii</i>) its geographical limits and the role of the continental enclave(s), and, (<i>iv</i>) the validity of the phytogeographical region level. We conclude that Macaronesia has its own identity and a sound phytogeographical foundation, and that this is mainly based on three different floristic components that are shared by the Macaronesian core (Madeira and the Canaries) and the outermost archipelagos (Azores and Cabo Verde). These floristic components are: (<i>i</i>) the Palaeotropical-Tethyan Geoflora, formerly much more widely distributed in Europe and North Africa and currently restricted to the three northern archipelagos (the Azores, Madeira and the Canaries); (<i>ii</i>) the African Rand Flora, still extant in the coastal margins of Africa and Arabia, and present in the southern archipelagos (Madeira, the Canaries and Cabo Verde), and (<i>iii</i>) the Macaronesian neoendemic floristic component, represented in all the archipelagos, a result of allopatric diversification promoted by isolation of Mediterranean ancestors that manage to colonize Central Macaronesia and, from there, the outer archipelagos. Finally, a differentiating floristic component recently colonized the different archipelagos from the nearest continental coast, providing them with different biogeographic flavours.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2060-2081"},"PeriodicalIF":11.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ígor Abba Arriola, Elaine Cotrim Costa, Denis Coelho de Oliveira, Rosy Mary dos Santos Isaias
{"title":"Soil–plant–gall relationships: from gall development to ecological patterns","authors":"Ígor Abba Arriola, Elaine Cotrim Costa, Denis Coelho de Oliveira, Rosy Mary dos Santos Isaias","doi":"10.1111/brv.13106","DOIUrl":"10.1111/brv.13106","url":null,"abstract":"<div>\u0000 \u0000 <p>The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant–gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant–gall water dynamics. An overview of the different soil–plant–gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant–herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1948-1975"},"PeriodicalIF":11.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organismal trade-offs and the pace of planktonic life","authors":"Thomas Kiørboe","doi":"10.1111/brv.13108","DOIUrl":"10.1111/brv.13108","url":null,"abstract":"<p>No one is perfect, and organisms that perform well in some habitat or with respect to some tasks, do so at the cost of performance in others: there are inescapable trade-offs. Organismal trade-offs govern the structure and function of ecosystems and attempts to demonstrate and quantify trade-offs have therefore been an important goal for ecologists. In addition, trade-offs are a key component in trait-based ecosystem models. Here, I synthesise evidence of trade-offs in plankton organisms, from bacteria to zooplankton, and show how a slow–fast gradient in life histories emerges. I focus on trade-offs related to the main components of an organism's Darwinian fitness, that is resource acquisition, survival, and propagation. All consumers need to balance the need to eat without being eaten, and diurnal vertical migration, where zooplankton hide at depth during the day to avoid visual predators but at the cost of missed feeding opportunities in the productive surface layer, is probably the best documented result of this trade-off. However, there are many other more subtle but equally important behaviours that similarly are the result of an optimisation of these trade-offs. Most plankton groups have also developed more explicit defence mechanisms, such as toxin production or evasive behaviours that are harnessed in the presence of their predators; the costs of these have often proved difficult to quantify or even demonstrate, partly because they only materialise under natural conditions. Finally, all multicellular organisms must allocate time and resources among growth, reproduction, and maintenance (e.g. protein turnover and DNA repair), and mate finding may compromise both survival and feeding. The combined effects of all these trade-offs is the emergence of a slow–fast gradient in the pace-of-life, likely the most fundamental principle for the organisation of organismal life histories. This crystallisation of trade-offs may offer a path to further simplification of trait-based models of marine ecosystems.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1992-2002"},"PeriodicalIF":11.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Cherif, Ulrich Brose, Myriam R. Hirt, Remo Ryser, Violette Silve, Georg Albert, Russell Arnott, Emilio Berti, Alyssa Cirtwill, Alexander Dyer, Benoit Gauzens, Anhubav Gupta, Hsi-Cheng Ho, Sébastien M. J. Portalier, Danielle Wain, Kate Wootton
{"title":"The environment to the rescue: can physics help predict predator–prey interactions?","authors":"Mehdi Cherif, Ulrich Brose, Myriam R. Hirt, Remo Ryser, Violette Silve, Georg Albert, Russell Arnott, Emilio Berti, Alyssa Cirtwill, Alexander Dyer, Benoit Gauzens, Anhubav Gupta, Hsi-Cheng Ho, Sébastien M. J. Portalier, Danielle Wain, Kate Wootton","doi":"10.1111/brv.13105","DOIUrl":"10.1111/brv.13105","url":null,"abstract":"<p>Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator–prey interactions, and a generic, modular model is needed to describe all the possible variation in predator–prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1927-1947"},"PeriodicalIF":11.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Habitat requirements of deadwood-dependent invertebrates that occupy tree hollows","authors":"Thomas Ranius, Philip Gibbons, David Lindenmayer","doi":"10.1111/brv.13110","DOIUrl":"10.1111/brv.13110","url":null,"abstract":"<p>Tree hollows support a specialised species-rich fauna. We review the habitat requirements of saproxylic (= deadwood dependent) invertebrates which occupy tree hollows. We focus on studies quantifying relationships between species occurrence patterns and characteristics of tree hollows, hollow trees, and the surrounding landscape. We also explore the processes influencing species occurrence patterns by reviewing studies on the spatio-temporal dynamics of populations, including their dispersal and genetic structure. Our literature search in the database <i>Scopus</i> identified 52 relevant publications, all of which were studies from Europe. The dominant taxonomic group studied was beetles. Invertebrates in hollow trees were often more likely to be recorded in trees with characteristics reflecting a large amount of resources or a stable and warm microclimate, such as a large diameter, large amounts of wood mould (= loose material accumulated in the hollows mainly consisting of decaying wood), a high level of sun exposure, and with entrance holes that are large and either at a low or high height, and in dry hollows, with entrances not directed upwards. A stable microclimate is probably a key factor why some species of saproxylic invertebrates are confined to tree hollows. Other factors that are different in comparison to downed dead wood is the fact that hollows at a given height from the ground provide shelter from ground-living predators, that hollows persist for longer, and that the content of nutrients might be enhanced by the accumulation of dead leaves, insect frass, and remains from dead insects. Several studies have identified a positive relationship between species occupancy per tree and the amount of habitat in the surrounding landscape, with a variation in the spatial scale at which characteristics of the surrounding landscape had the strongest effect over spatial scales from 200 to 3000 m. We found empirical support for the extinction threshold hypothesis, which predicts that the frequency of species presence per tree is greater if a certain number of trees are aggregated into a few large clusters of hollow trees rather than distributed among many small clusters. Observed thresholds in species occurrence patterns can be explained by colonisation–extinction dynamics, with species occupancy per tree influenced by variation in rates of immigration. Consistent with this assumption, field studies suggest that dispersal rate and range can be low for invertebrates occupying tree hollows, although higher in a warmer climate. For one species in which population dynamics has been studied over 25 years (<i>Osmoderma eremita</i>), the observed population dynamics have characteristics of a “habitat-tracking metapopulation”, as local extinctions from trees occur possibly because those trees become unsuitable as well as due to stochastic processes in small populations. The persistence of invertebrate fauna confined to tree hollows may be improved by","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"2022-2034"},"PeriodicalIF":11.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth M. Speechley, Benjamin J. Ashton, Yong Zhi Foo, Leigh W. Simmons, Amanda R. Ridley
{"title":"Meta-analyses reveal support for the Social Intelligence Hypothesis","authors":"Elizabeth M. Speechley, Benjamin J. Ashton, Yong Zhi Foo, Leigh W. Simmons, Amanda R. Ridley","doi":"10.1111/brv.13103","DOIUrl":"10.1111/brv.13103","url":null,"abstract":"<p>The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 5","pages":"1889-1908"},"PeriodicalIF":11.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unifying functional and population ecology to test the adaptive value of traits","authors":"Daniel C. Laughlin","doi":"10.1111/brv.13107","DOIUrl":"10.1111/brv.13107","url":null,"abstract":"<div>\u0000 \u0000 <p>Plant strategies are phenotypes shaped by natural selection that enable populations to persist in a given environment. Plant strategy theory is essential for understanding the assembly of plant communities, predicting plant responses to climate change, and enhancing the restoration of our degrading biosphere. However, models of plant strategies vary widely and have tended to emphasize either functional traits or life-history traits at the expense of integrating both into a general framework to improve our ecological and evolutionary understanding of plant form and function. Advancing our understanding of plant strategies will require investment in two complementary research agendas that together will unify functional ecology and population ecology. First, we must determine what is phenotypically possible by quantifying the dimensionality of plant traits. This step requires dense taxonomic sampling of traits on species representing the broad diversity of phylogenetic clades, environmental gradients, and geographical regions found across Earth. It is important that we continue to sample traits locally and share data globally to fill biased gaps in trait databases. Second, we must test the power of traits for explaining species distributions, demographic rates, and population growth rates across gradients of resource limitation, disturbance regimes, temperature, vegetation density, and frequencies of other strategies. This step requires thoughtful, theory-driven empiricism. Reciprocal transplant experiments beyond the native range and synthetic demographic modelling are the most powerful methods to determine how trait-by-environment interactions influence fitness. Moving beyond easy-to-measure traits and evaluating the traits that are under the strongest ecological selection within different environmental contexts will improve our understanding of plant adaptations. Plant strategy theory is poised to (<i>i</i>) unpack the multiple dimensions of productivity and disturbance gradients and differentiate adaptations to climate and resource limitation from adaptations to disturbance, (<i>ii</i>) distinguish between the fundamental and realized niches of phenotypes, and (<i>iii</i>) articulate the distinctions and relationships between functional traits and life-history traits.</p>\u0000 </div>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"99 6","pages":"1976-1991"},"PeriodicalIF":11.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}