Sanjay K. S. Patel, Rahul K. Gupta, Karthikeyan K. Karuppanan, Deepak Kumar Padhi, Sampathkumar Ranganathan, Parasuraman Paramanantham, Jung-Kul Lee
{"title":"Nonsterile Process for Biohydrogen Production: Recent Updates, Challenges, and Opportunities","authors":"Sanjay K. S. Patel, Rahul K. Gupta, Karthikeyan K. Karuppanan, Deepak Kumar Padhi, Sampathkumar Ranganathan, Parasuraman Paramanantham, Jung-Kul Lee","doi":"10.1007/s12088-024-01319-1","DOIUrl":"https://doi.org/10.1007/s12088-024-01319-1","url":null,"abstract":"<p>Hydrogen (H<sub>2</sub>), a clean and versatile energy carrier, has recently gained significant attention as a potential solution for reducing carbon emissions and promoting sustainable energy systems. The yield and efficiency of the biological H<sub>2</sub> production process primarily depend on sterilization conditions. Various strategies, such as heat inactivation and membrane-based sterilization, have been used to achieve desirable yields via microbial fermentation. Almost every failed biotransformation process is linked to nonsterile conditions at any reaction stage. Therefore, the production of renewable biofuels as alternatives to fossil fuels is more attractive. Pure sugars have been widely documented as a costly feedstock for H<sub>2</sub> production under sterile conditions. Biotransformation under nonsterile conditions is more desirable for stable and sustainable operation. Low-cost feeds, such as biowaste, are considered suitable alternatives, but they require appropriate sterilization to overcome the limitations of inherited or contaminating microbes during H<sub>2</sub> production. This article describes the status of microbial fermentative processes for H<sub>2</sub> production under nonsterile conditions and discusses strategies to improve such processes for sustainable, cleaner production.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"4 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants","authors":"Dilfuza Jabborova, Bakhodir Mamarasulov, Kakhramon Davranov, Yuriy Enakiev, Neha Bisht, Sachidanand Singh, Svilen Stoyanov, Amar P. Garg","doi":"10.1007/s12088-024-01275-w","DOIUrl":"https://doi.org/10.1007/s12088-024-01275-w","url":null,"abstract":"<p>Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of <i>Bacillus</i>, <i>Rhizobium</i>, <i>Pseudomonas</i>, <i>Azotobacter</i>, <i>Burkholderia</i>, <i>Enterobacte</i>, <i>Microbacterium</i>, <i>Serratia</i>, <i>Burkholderia</i>, and <i>Beijerinckia.</i> Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"19 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Diesel Degrading Indigenous Bacterial Strains, Acinetobacter pittii and Pseudomonas aeruginosa, Isolated from Oil Contaminated Soils","authors":"Sonam Dohare, Hemant Kumar Rawat, Yogesh Bhargava, Naveen Kango","doi":"10.1007/s12088-024-01317-3","DOIUrl":"https://doi.org/10.1007/s12088-024-01317-3","url":null,"abstract":"<p>In this study, 13 diesel degrading bacteria were isolated from the oil contaminated soils and the promising strains identified as <i>Acinetobacter pittii</i> ED1 and <i>Pseudomonas aeruginosa</i> BN were evaluated for their diesel degrading capabilities. These strains degraded the diesel optimally at 30 °C, pH 7.0 and 1% diesel concentration. Both the strains produced biofilm at 1% diesel concentration indicating their ability to tolerate diesel induced abiotic stress. Gravimetric analysis of the spent medium after 7 days of incubation showed that <i>A. pittii</i> ED1 and <i>P. aeruginosa</i> BN degraded 68.61% and 76% diesel, respectively, while biodegradation reached more than 90% after 21 days. Fourier Transform Infrared (FTIR) analysis of the degraded diesel showed 1636.67 cm<sup>−1</sup> (C=C stretch, N–H bond) peak corresponding to alkenes and primary amines, while GC-TOF-MS analysis showed decline in hydrocarbon intensities after 7 days of incubation. The present study revealed that newly isolated <i>A. pittii</i> ED1 and <i>P. aeruginosa</i> BN were able to degrade diesel hydrocarbons (C11–C18, and C19–C24) efficiently and have potential for bioremediation of the oil-contaminated sites.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"30 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Mini Review on Electrochemical Nano-biosensors in Detection of Drugs/Pesticides","authors":"Anirudh Pratap Singh Raman, Vaibhav Kumar Mishra, Sandeep Yadav, Pallavi Jain, Prashant Singh, Kamlesh Kumari","doi":"10.1007/s12088-024-01303-9","DOIUrl":"https://doi.org/10.1007/s12088-024-01303-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In last few years, sensing of molecules has gained a huge attention of scientists and researchers. Small molecules (drugs, pesticides, and others) are being consumed directly or indirectly by us in our daily life. Often, these molecules enter the environment and interact with different non-target organisms. Consumption of drugs/pesticides emerged as a major concern for public health, environment, ground-water and agricultural soil. Pesticides can have odd impacts such as degradation of soil properties, environmental pollution, pollution of groundwater as well as the consumption of unwanted drugs can have serious health impacts. Therefore, the sensing of drugs/pesticides plays an important role in detecting and preventing the unwanted usage of drugs/pesticides. Quantitative and qualitative determination of pesticides and drugs can be achieved using electrochemical techniques. This review offers a concise examination of the literature about the electrochemical sensing of drugs and pesticides. The review provides a comprehensive summary of different electrochemical investigations and outlines the reported analytical performance metrics, including limits of detection and linearity ranges. Furthermore, it underscores the progress made in pesticide detection using electrochemical methods for the selected compounds, highlighting the challenges ahead and emphasizing the necessary efforts to develop sensors suitable for in-situ applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"44 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microfluidic Systems: Recent Advances in Chronic Disease Diagnosis and Their Therapeutic Management","authors":"Swadha Pandey, Saurabh Gupta, Alok Bharadwaj, Amisha Rastogi","doi":"10.1007/s12088-024-01296-5","DOIUrl":"https://doi.org/10.1007/s12088-024-01296-5","url":null,"abstract":"<p>Microfluidics has advanced the area of diagnostics during the past ten years by offering fresh approaches that weren’t achievable with traditional detection and treatment techniques. High-throughput operations can be carefully controlled by using microfluidics and are very cost-effective too. It has been accepted to be a quick and effective method for controlled medication delivery, biological sample preparation, and analysis. This new technology has made it possible to create a wide range of micro and nanocarriers for poorly soluble medications, which has many advantages over traditional drug delivery techniques. Furthermore, a targeted medication delivery system utilizing microfluidic technology can be developed to enhance the drug's local bioavailability. Over the years, extensive R&D in microfluidic technology has led to the creation of various advanced applications in both laboratory and consumer biotechnology. Miniaturized genetic and proteasome analyzers, cell culture and control platforms, biosensors, disease detection, optical imaging devices, diagnostic advanced drugs, drug delivery schemes, and innovative products are some of the advanced applications of the microfluidics system. Also, these are highly adaptable microfluidic tools for disease detection and organ modeling, as well as transduction devices used in biomedical applications to detect biological and chemical changes. Beyond the specialized difficulties in studying cell–cell interactions, microfluidics has several difficulties in biomedical applications, especially for diagnostic devices where minute interactions can lead to imprecise evaluations. Assay function can be significantly changed by the way plastics, adhesives, and other materials interact. Therefore, the foundation of microfluidic technology needs to be grounded in real-world uses that can be produced on a big scale and at a reasonable cost. Further, it is a very interdisciplinary field that requires the collaboration of professionals in fluidics, assay science, materials science, and instrumentation to provide devices with the proper and needed functionality. In this article, we have discussed the advanced disease diagnosis and their therapeutic management which will help to understand the current scenario in the field of microfluidics diagnosis and will fill knowledge about the ‘gap’ in the system.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"49 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of Changes in Soil Microbial Community Physiological Profiles in Relation to Forest Types and Presence of Antibiotics Using BIOLOG EcoPlate","authors":"Benjamin C. Decena, Thomas Edison E. dela Cruz","doi":"10.1007/s12088-024-01294-7","DOIUrl":"https://doi.org/10.1007/s12088-024-01294-7","url":null,"abstract":"<p>Soil is home to microbiota with diverse metabolic activities. These microorganisms play vital roles in many ecological processes. Thus, the assessment of microbial functional diversity is an important quality indicator of soil ecosystems. In this study, we collected soil samples from three distinct forest habitats, i.e., an agroforest, a primary forest (PF), and a secondary forest, within the Angat Watershed Reservation in Bulacan, Northern Philippines. Community-level physiological profiling (CLPP) was done with the BIOLOG EcoPlate™ to analyze the responses of the soil microbial communities from the three forest habitats in the absence or presence of antibiotics. The BIOLOG EcoPlate represents 31 utilizable carbon sources. Based on the CLPP analysis, soil samples from the PF showed significantly higher utilization of most carbon sources than the other forest types (<i>p</i> < 0.05). Thus, less disturbed forest types constitute more functionally diverse microbial communities. The presence of antibiotics significantly decreased the carbon utilization patterns of the soil microbial communities (<i>p</i> < 0.05), indicating the possible use of CLPP in monitoring contamination in soil.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"97 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuanzhi Zhu, Qingde Song, Xinrong Li, Xiuyun He, Junli Li
{"title":"Enhanced Immune Responses Against Mycobacterium tuberculosis Through Heat-Killed BCG with Squalene-in-water Emulsion Adjuvant","authors":"Chuanzhi Zhu, Qingde Song, Xinrong Li, Xiuyun He, Junli Li","doi":"10.1007/s12088-024-01278-7","DOIUrl":"https://doi.org/10.1007/s12088-024-01278-7","url":null,"abstract":"<p>The increasing challenge of drug-resistant tuberculosis (TB) calls for the development of innovative therapeutic strategies, highlighting the potential of adjunctive immunotherapies that are both cost-effective and safe. Host-directed therapy (HDT) using immunomodulators shows promise in enhancing treatment efficacy by modulating immune responses, thereby shortening the duration of therapy and reducing drug resistance risks. This study investigated the immunomodulatory potential of combining Heat-killed Bacillus Calmette-Guérin (hBCG) with a Squalene-based oil-in-Water Emulsion (SWE) adjuvant against TB. The therapeutic efficacy of the hBCG-SWE regimen was assessed in a guinea pig model infected with <i>Mycobacterium tuberculosis</i> (<i>M. tb</i>). Furthermore, the impact of hBCG-SWE on TNF-α and MCP-1 production was evaluated in RAW264.7 macrophages, examining the role of TLR2/4 and MyD88 signaling pathways using ELISA, both with and without specific inhibitors. Our findings revealed that hBCG-SWE significantly enhanced TNF-α and MCP-1 production compared to hBCG alone, indicating activation through TLR2/4 and MyD88-dependent pathways. In guinea pigs, hBCG-SWE administration led to notable reductions in lung pathology and spleen bacterial loads versus control groups. These results highlight the capacity of hBCG-SWE to boost innate immunity and provide robust protection against <i>M. tb</i>. Future research should focus on evaluating the ability of hBCG-SWE to shorten conventional chemotherapy and exploring ways to amplify its immunomodulatory efficacy through advanced formulation techniques.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"41 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kruti Mistry, Anoop R. Markande, Janki K. Patel, Kinnari Parekh
{"title":"Screening, Isolation and Characterization of Aerobic Magnetotactic Bacteria From Western Ghats Forest Soil","authors":"Kruti Mistry, Anoop R. Markande, Janki K. Patel, Kinnari Parekh","doi":"10.1007/s12088-024-01316-4","DOIUrl":"https://doi.org/10.1007/s12088-024-01316-4","url":null,"abstract":"<p>Magnetotactic bacteria (MTB) are a unique ecophysiological group of iron-metabolizing bacteria that have immense potential biotechnological applications. These bacteria have predominantly been isolated from oxygen-limited conditions of aquatic niches and rarely from the soils. The Western Ghats biodiversity hotspot has been well-studied for its fauna and flora diversity. The present study includes optimization of enrichment medium for cultivation of MTB, to suit aerobic mesophiles from forest soil. The major components included were Ferric quinate and Resazurin. The enrichment and isolates were characterized for their magnetic properties using magnetotaxis on agar plates, Vibrating Sampler Magnetometer (VSM), and X-ray diffraction (XRD) analysis. The isolates, namely <i>Bacillus</i> sp. S1 (MN212953), <i>Sphingoaurantiacus</i> sp. S2_03 (MN212954), <i>Burkholderia</i> sp. S2_08 (MN212955) and <i>Microvirga</i> sp. S2_09 (MN212956) were isolated and characterized to have a magnetosome size of 2.5–8 nm. Our study is the first report on the enrichment and isolation of MTB from Western Ghats forest soil.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"48 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional Nanomaterials: Recent Advancements in Cancer Therapeutics and Vaccines","authors":"Saurabh Gupta, Rasanpreet Kaur, Alok Bhardwaj, Deepak Parashar","doi":"10.1007/s12088-024-01274-x","DOIUrl":"https://doi.org/10.1007/s12088-024-01274-x","url":null,"abstract":"<p>Nanotechnology has revolutionized cancer detection and treatment, overcoming limitations of conventional methods. Imaging, targeting, and therapy moieties can all be combined in multifunctional nanoparticle systems to deliver the imaging or treatment modalities to the tumor in a targeted manner. These nanostructures can be engineered to create smart drug delivery systems for effective distribution and combinatorial therapy. Nanostructures made of biomolecules are naturally multifunctional and have a variety of biological functions that can be investigated for use in cancer nanomedicine. The supramolecular characteristics of biomolecules can be carefully engineered to create smart drug delivery systems that enable effective drug distribution to specific areas of the body as well as combinatorial therapy in a single design. Nanotechnology has also increased the efficiency of cancer vaccines, highlighting the future of tumor immunotherapy. Nanomaterials are often used as anti-cancer drugs or anti-inflammatory drugs due to their biosafety potential and enhanced bioavailability. By delivering targeted antigens and adjuvants, nanomaterials can improve vaccination efficacy and safety, preventing rapid degradation and prolonging antigen retention in lymphoid and tumor cells. We examine both organic and inorganic multifunctional nanomaterials in this review, emphasizing particular multifunctional properties in the context of cancer targeting, therapy, and vaccinations.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"46 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial Bacterioruberin: A Comprehensive Review","authors":"Mouliraj Palanisamy, Sathishkumar Ramalingam","doi":"10.1007/s12088-024-01312-8","DOIUrl":"https://doi.org/10.1007/s12088-024-01312-8","url":null,"abstract":"<p>Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases. Although it possesses remarkable biological properties, studies related to the regulatory aspects of biosynthesis, in vitro and in vivo studies of purified BR have been rare. However, investigations are needed to explore the potential application of BR in various industries. Additionally, optimization of the culture conditions of BR-producing haloarchaea could pave the way for their sustainable production and utilization. The current review provides comprehensive information on BR, which includes the sources of this compound and its bioproduction, extraction, stability, toxicity, and biological activities in relation to its commercial applications. This review also discusses the potential challenges and limitations associated with BR bioproduction and its utilization in various industries. In addition, this treatise highlights the need for further research to optimize production and extraction methods and explore avenues for novel applications of BR in various sectors, such as pharmaceuticals, food, and cosmetics.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}