Health physicsPub Date : 2025-01-28DOI: 10.1097/HP.0000000000001955
Lienard Chang, Daniel Kim
{"title":"Radiation Dose to Occupational Dosimeters Brought on Commercial Air Travel.","authors":"Lienard Chang, Daniel Kim","doi":"10.1097/HP.0000000000001955","DOIUrl":"https://doi.org/10.1097/HP.0000000000001955","url":null,"abstract":"<p><strong>Abstract: </strong>Occupational radiation dosimeters that return high readings cannot always be explained by circumstances in the workplace. For this experiment, a series of optically stimulated luminescence (OSL) dosimeters were brought to airports to estimate the radiation dose OSLs would receive should a worker accidentally bring their dosimeter with them during travel. The OSLs returned readings between 0.77 and 3.70 mSv. While factors such as scanning times, machine modality and model, flight duration, and elevation changes can all affect dosimeter readings, this small experiment provides a general range of dose readings to dosimeters to assist radiation safety program managers in quantifying true radiation dose from the workplace.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis Method of 131I Activity in Carbon Cartridge and Internal Dose Assessment for Nuclear Medicine Workers.","authors":"Shuo Wang, Fei Tuo, Jian-Feng Zhang, Xiao-Liang Li, Bao-Lu Yang, Qiang Zhou, Ze-Shu Li, Shu-Ying Kong, Wei-Hao Qin","doi":"10.1097/HP.0000000000001954","DOIUrl":"https://doi.org/10.1097/HP.0000000000001954","url":null,"abstract":"<p><strong>Abstract: </strong>Inhalation of 131I is the main route for internal doses to nuclear medicine workers. This study aimed to establish a simple analysis method for determining 131I activity in carbon cartridges, explore the activity concentration of 131I in nuclear medicine departments, and evaluate the internal dose of workers. A total of 21 nuclear medicine departments in the hospital conducted air sampling using a high-volume air sampler equipped with carbon cartridges and glass fiber filters to collect gaseous 131I and aerosol 131I, respectively. Furthermore, a mathematical model was developed to analyze the 131I activity with inhomogeneous distribution in cartridges. Based on the 131I activity measured by the HPGe γ spectrometer, the personal annual inhalation effective dose was estimated. The results showed that there is a significant difference in the activity of gaseous 131I and aerosol 131I, with the activity ranging from 1.5±0.08 Bq m-1 to 3,944.23±197.21 Bq m-3 and ND (not detectable) to 842.11±42.11 Bq m-3, respectively. The activity of aerosol 131I is about 1% to 7% of that of gaseous 131I. The annual committed effective dose caused by inhalation of 131I for workers is 3.6 μSv to 8.23 mSv, which is lower than the dose limit of 20 mSv y-1. In general, the 131I contamination in the nuclear medicine department cannot be ignored, and the concentration of 131I should be regularly monitored to prevent and control the internal radiation to which workers may be exposed.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studies on Shielding and Activation Levels in a Concrete-Iron-Concrete Sandwich Structure Wall in the CMUH Proton Therapy Facility.","authors":"Po-Wen Fang, Ying-I Hsieh, An-Cheng Shiau, Rong-Jiun Sheu","doi":"10.1097/HP.0000000000001943","DOIUrl":"https://doi.org/10.1097/HP.0000000000001943","url":null,"abstract":"<p><strong>Abstract: </strong>The shielding performance and activation susceptibility of a sandwich wall in the proton therapy facility of China Medical University Hospital were investigated in an integrated manner using FLUKA Monte Carlo simulations. The 2-m-thick partition wall between two adjoining treatment rooms had a three-layered structure, which comprised a 0.2-m-thick iron layer sandwiched between two layers of 0.9-m-thick concrete. In comparison with that of a concrete wall of the same thickness, the shielding performance of the concrete-iron-concrete wall was marginally better, further reducing the transmitted dose rate by approximately a factor of 2 against secondary neutrons generated through proton bombardment. This study also investigated radioactivity levels from long-lived radionuclides (3H, 22Na, 54Mn, 55Fe, 60Co, 134Cs, 152Eu, and 154Eu) that are primarily induced in concrete or iron by neutrons. The specific activities of 54Mn, 55Fe, and 60Co in the middle iron layer were considerably higher (by factors of 75, 25, and 5, respectively) than those in the neighboring concrete. However, as for clearance levels, the index value of the iron layer was lower than that of the neighboring concrete because of the presence of fewer types of long-lived radionuclides in iron. Under irradiation scenarios considered in this study, the residual activity levels of the sandwich wall do not exceed those of a full-concrete wall, and the indexes at various depths estimated at 5 years cooling following a 20-y operational period comply with clearance criteria.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-09-19DOI: 10.1097/HP.0000000000001890
Lancer Smith, Emily Caffrey, Charles Wilson
{"title":"A Novel Shielding Device for Cardiac Cath Labs.","authors":"Lancer Smith, Emily Caffrey, Charles Wilson","doi":"10.1097/HP.0000000000001890","DOIUrl":"10.1097/HP.0000000000001890","url":null,"abstract":"<p><strong>Abstract: </strong>This research evaluates the effectiveness of a large specialized cardiac catheterization laboratory shielding device (SCCLSD) placed perpendicular to the patient compared to traditional shielding methods in reducing occupational exposure to scattered x rays, contributing to the ongoing enhancement of radiation safety in the cardiac catheterization laboratory (CCL) setting. An experimental setup involving an anthropomorphic phantom on the catheterization table simulated radiation scatter from a patient. Measurements were taken systematically at various grid points and heights in the CCL using a Fluke 451P ion chamber while mimicking a real interventional scenario. In-air peak exposure rates were analyzed at head, chest, and waist heights in the anteroposterior (AP) position. Results demonstrated that the SCCLSD provided a superior radiation shadow and effective whole-body radiation exposure reduction compared to conventional shielding devices. Considering that conventional shielding requires staff to wear lead aprons, an effective dose equivalent correction factor was applied for exposure measurements without the SCCLSD. Even after the correction factor, the SCCLSD continued outperforming lead aprons and offered whole-body protection, including the head and arms, which is typically neglected with conventional shielding. The SCCLSD also reduces exposure to the eyes, aligning with lower occupational exposure recommendations from ICRP and NCRP. However, proper CCL staff positioning is important in maximizing the effectiveness of the SCCLSD. Future research avenues may explore exposure rates at different C-arm angles to more completely assess the SCCLSD's impact on occupational exposure.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"52-59"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142285889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-09-27DOI: 10.1097/HP.0000000000001885
Jordan D Noey, Colin J Stewart, Kimberlee J Kearfott
{"title":"Implementing a Phase II Quality Control Protocol for a High Precision 137 Cs Dosimetry Calibration Irradiator.","authors":"Jordan D Noey, Colin J Stewart, Kimberlee J Kearfott","doi":"10.1097/HP.0000000000001885","DOIUrl":"10.1097/HP.0000000000001885","url":null,"abstract":"<p><strong>Abstract: </strong>In medical physics, rigorous quality assurance and quality control protocols are vital for precise dose delivery applications. In many health physics applications, the allowable uncertainty for various processes is often greater than that of medical physics due to looser safety ties. This results in less demand for quality control and uncertainty analyses, since these may not be needed. However, certain applications can benefit from a comprehensive quality control program, as it may yield important insights, such as air kerma monitoring in dosimetry calibrations for environmental and low-dose applications. By implementing a thorough quality control program tailored to specific contexts and needs, uncertainties associated with dose measurements can be quantified with greater accuracy and reliability. This proactive approach not only ensures the integrity of data collected but also enhances understanding of the measured doses. For these reasons, a comprehensive quality control initiative was implemented following documented failures in a 137 Cs dosimetry calibration irradiator. This involved systematic charge collection using NIST-traceable ion chambers to observe long-term changes. A Phase I quality control protocol was previously implemented, which employed Shewhart control charts and Nelson's rules to analyze various datasets subgrouped under different conditions. This study addresses the development of a Phase II protocol, which focuses more on uncertainty quantification of systematic errors and irradiator changes, and air kerma precision for dosimetry calibrations. A designed experiment was performed to identify how much systematic errors influence the air kerma. Emphasis was placed on stricter quality assurance protocols, continuous data collection, and additional control charts to monitor short-term changes, such as exponentially weighted moving average control charts. A pre-irradiation control process was implemented to verify that the total air kerma met the measurement quality objective and to show how various uncertainties were applied before calibration. This study indicates how uncertainty is applied given observed air kerma measurements from the irradiator. Ongoing efforts aim to streamline the quality control procedure, ensure consistent data collection, and assess its impact on dosimetry applications.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"66-77"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-09-13DOI: 10.1097/HP.0000000000001858
Carly E Evans, Kimberlee J Kearfott
{"title":"A 291-day Evaluation of the Performance of a Consumer-grade Temporal Radon Detector.","authors":"Carly E Evans, Kimberlee J Kearfott","doi":"10.1097/HP.0000000000001858","DOIUrl":"10.1097/HP.0000000000001858","url":null,"abstract":"<p><strong>Abstract: </strong>Affordable, accurate, and robust temporal measurement devices are desirable for screening and assessment of radon levels in private homes and workplaces. This research expands upon prior research, using the RadonFTlab RadonEye device through a comparison of multiple samples of this instrument with a laboratory-grade instrument, the Saphymo AlphaGUARD, over a more extensive period than reported previously. Data were collected over 291 d in a poorly ventilated basement space in an occupied building. Environmental conditions varied naturally, changing both the radon source term and radon entry into the space approximating typically deployed conditions. The R-squared linear regression correlation coefficient and relative sensitivities of each RadonEye with the AlphaGUARD were computed. Overall temporal and diurnal variations were also studied. The sensitivities of all RadonEyes and the AlphaGUARD agreed to within 22% throughout the entire deployment period.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"60-65"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142285888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-09-02DOI: 10.1097/HP.0000000000001889
Krishnakumar Divakar Nangeelil, Haven Searcy, Beverly Parker, Zaijing Sun
{"title":"Assessing Radiation Fallout in Public Zones near the Nevada National Security Site (NNSS): A Recent Study.","authors":"Krishnakumar Divakar Nangeelil, Haven Searcy, Beverly Parker, Zaijing Sun","doi":"10.1097/HP.0000000000001889","DOIUrl":"10.1097/HP.0000000000001889","url":null,"abstract":"<p><strong>Abstract: </strong>A comprehensive radiological study was conducted in the surrounding public zones of the Nevada National Security Site to identify traces of resuspended radioactivity and heavy elemental contamination that might have resulted from various activities. The study used passive and active nuclear methods, specifically gamma spectrometry and instrumental neutron activation analysis, respectively. Passive gamma spectra analysis of air filter papers from various Community Environmental Monitoring Program stations conclusively verified the presence of radionuclides exclusively originating from the natural decay series of 238 U and 232 Th. Furthermore, gamma spectrometry and instrumental neutron activation analysis of plant samples from surrounding areas of the Nevada National Security Site revealed the absence of any unusual elemental contamination in the environment. These results demonstrated that there was no measurable radiological impact on the public zones surrounding the site resulting from the spread of radioactive materials or toxic heavy metals associated with previous or ongoing activities at Nevada National Security Site. Therefore, the safety of public zones concerning retained radioactivity and harmful elemental contamination arising from Nevada National Security Site operations is negligible. The significance of this study is further pronounced in the current geopolitical context, as it establishes the baseline elemental composition for various desert plants for future reference.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"37-46"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-07-08DOI: 10.1097/HP.0000000000001821
Theodore Thomas, Jason Harris
{"title":"Development of a Nuclear Safety and Security Integration Assessment Tool for Research Reactors and Associated Facilities.","authors":"Theodore Thomas, Jason Harris","doi":"10.1097/HP.0000000000001821","DOIUrl":"10.1097/HP.0000000000001821","url":null,"abstract":"<p><strong>Abstract: </strong>Nuclear safety and security are essential elements of radiation protection. Integration of nuclear safety and security provides a means to identify conflict and synergy points. Research has not been performed to enable integrated practices at the facility level. A tool was developed through research to help staff and regulators assess the level of integration practiced within a research reactor. This tool aims to improve the identification of synergistic and conflict points. Eight criteria of nuclear safety and security integration were used to create the integration assessment tool: access control, transportation, emergency response, proper disposal of materials, testing and maintenance, defense in depth, training and education, and culture. The tool's final score can range from 0.0375 to 1, with a score of 1 indicating complete integration. The tool was used by research reactor staff to assess practiced integrative techniques. The testing and maintenance criterion scored the highest level of integration (0.84). Training and education and culture scored the lowest levels of integration (0.50). The areas with the highest scores identified points of actively practiced integration. In contrast, those areas with lower scores indicated a lack of integrative practices. The total integration score was 0.69. This tool determined that the facility practiced an adequate level of integration. By analyzing integration levels with this tool, a measurable standard of integrative practices can be employed to achieve improved radiation protection.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"24-36"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-06-18DOI: 10.1097/HP.0000000000001845
Chandler Cotton, Charles Wilson, Robert Heath, Emily Caffrey
{"title":"Andragogic Improvements in Radiation Safety Training.","authors":"Chandler Cotton, Charles Wilson, Robert Heath, Emily Caffrey","doi":"10.1097/HP.0000000000001845","DOIUrl":"10.1097/HP.0000000000001845","url":null,"abstract":"<p><strong>Abstract: </strong>At the University of Alabama at Birmingham (UAB), many diagnostic and therapeutic procedures involving radioactive materials or radiation-producing machines are performed daily. A growing number of minor but preventable incidents related to radiation safety have brought up concerns related to the effectiveness of the training program. A comprehensive literature review was performed to summarize post-COVID insights into andragogic online training practices, statistical analyses, and overall retention competencies in radiation safety. Andragogic research shows that the best method of training adult learners is controlled simulation that tests critical thinking and problem-solving capabilities, drawing upon previous knowledge or experiences. A new training curriculum based on these andragogic principles was designed and administered to a subgroup of UAB radiation workers. Scores from pre-testing and post-testing were collected and analyzed. An ANCOVA was used to account for differences in the pre-test scores between the control and experimental groups, which was found to be statistically significant (p = 0.018), suggesting that small changes in a radiation safety training program can have significant impacts in retention of key information.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"47-51"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Health physicsPub Date : 2025-01-01Epub Date: 2024-06-18DOI: 10.1097/HP.0000000000001842
Joeun L Kot, Jason T Harris
{"title":"Risk Assessment for Nuclear Terrorism Probability and Its Application on a Hypothetical Nuclear Facility.","authors":"Joeun L Kot, Jason T Harris","doi":"10.1097/HP.0000000000001842","DOIUrl":"10.1097/HP.0000000000001842","url":null,"abstract":"<p><strong>Abstract: </strong>Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"13-23"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}