Lu Sun, Na Wang, Jianlei Ruan, Gang Gao, Yan Pan, Chunnan Piao, Huanhuan Li, Sitong Liu, Zhuo Zhang, Yong Cui, Sumei Sun, Jianxiang Liu
{"title":"微rna作为氡致辐射损伤潜在生物标志物的研究。","authors":"Lu Sun, Na Wang, Jianlei Ruan, Gang Gao, Yan Pan, Chunnan Piao, Huanhuan Li, Sitong Liu, Zhuo Zhang, Yong Cui, Sumei Sun, Jianxiang Liu","doi":"10.1097/HP.0000000000001969","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>High concentrations of radon may cause radiation damage to the human body. Finding the biomarkers of radon-induced radiation damage is particularly important for the research and treatment of radon-induced lung cancer. In this study, the expression of γH2AX protein in peripheral blood lymphocytes of miners exposed to high concentrations of radon was detected by flow cytometry. To investigate the possible damage in peripheral blood lymphocytes of miners under a high radon environment, a microRNA (miRNA) microarray technique was used to screen the differentially expressed miRNAs in the peripheral plasma of miners exposed to different concentrations of radon. Prediction of the target genes and the possible biological functions of differentially expressed miRNAs in the peripheral plasma of miners was performed. The results indicated that the relative expression level of γH2AX protein in peripheral blood lymphocytes of miners was significantly higher than that of the control group (P < 0.05). Bioinformatics methods were used to predict the differential expression miRNA chip to screen the target genes of differentially expressed miRNAs and the signaling pathways that may be involved in screening differentially expressed miRNA target genes and to investigate the relationship between some different miRNA target genes and cellular pathways. The analysis of the cellular pathways predicted by differentially expressed miRNAs, including the process of cell cycle, provides new information for the study of miRNAs as potential biomarkers of radon-induced radiation damage in peripheral blood.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on MicroRNAs as Potential Biomarkers of Radon-induced Radiation Damage.\",\"authors\":\"Lu Sun, Na Wang, Jianlei Ruan, Gang Gao, Yan Pan, Chunnan Piao, Huanhuan Li, Sitong Liu, Zhuo Zhang, Yong Cui, Sumei Sun, Jianxiang Liu\",\"doi\":\"10.1097/HP.0000000000001969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>High concentrations of radon may cause radiation damage to the human body. Finding the biomarkers of radon-induced radiation damage is particularly important for the research and treatment of radon-induced lung cancer. In this study, the expression of γH2AX protein in peripheral blood lymphocytes of miners exposed to high concentrations of radon was detected by flow cytometry. To investigate the possible damage in peripheral blood lymphocytes of miners under a high radon environment, a microRNA (miRNA) microarray technique was used to screen the differentially expressed miRNAs in the peripheral plasma of miners exposed to different concentrations of radon. Prediction of the target genes and the possible biological functions of differentially expressed miRNAs in the peripheral plasma of miners was performed. The results indicated that the relative expression level of γH2AX protein in peripheral blood lymphocytes of miners was significantly higher than that of the control group (P < 0.05). Bioinformatics methods were used to predict the differential expression miRNA chip to screen the target genes of differentially expressed miRNAs and the signaling pathways that may be involved in screening differentially expressed miRNA target genes and to investigate the relationship between some different miRNA target genes and cellular pathways. The analysis of the cellular pathways predicted by differentially expressed miRNAs, including the process of cell cycle, provides new information for the study of miRNAs as potential biomarkers of radon-induced radiation damage in peripheral blood.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001969\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Study on MicroRNAs as Potential Biomarkers of Radon-induced Radiation Damage.
Abstract: High concentrations of radon may cause radiation damage to the human body. Finding the biomarkers of radon-induced radiation damage is particularly important for the research and treatment of radon-induced lung cancer. In this study, the expression of γH2AX protein in peripheral blood lymphocytes of miners exposed to high concentrations of radon was detected by flow cytometry. To investigate the possible damage in peripheral blood lymphocytes of miners under a high radon environment, a microRNA (miRNA) microarray technique was used to screen the differentially expressed miRNAs in the peripheral plasma of miners exposed to different concentrations of radon. Prediction of the target genes and the possible biological functions of differentially expressed miRNAs in the peripheral plasma of miners was performed. The results indicated that the relative expression level of γH2AX protein in peripheral blood lymphocytes of miners was significantly higher than that of the control group (P < 0.05). Bioinformatics methods were used to predict the differential expression miRNA chip to screen the target genes of differentially expressed miRNAs and the signaling pathways that may be involved in screening differentially expressed miRNA target genes and to investigate the relationship between some different miRNA target genes and cellular pathways. The analysis of the cellular pathways predicted by differentially expressed miRNAs, including the process of cell cycle, provides new information for the study of miRNAs as potential biomarkers of radon-induced radiation damage in peripheral blood.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.