Frontiers in Neuroinformatics最新文献

筛选
英文 中文
Decoding event-related potentials: single-dose energy dietary supplement acts on earlier brain processes than we thought. 解码事件相关电位:单剂量能量膳食补充剂作用于比我们想象的更早的大脑过程。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-07-08 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1563893
Karina J Maciejewska
{"title":"Decoding event-related potentials: single-dose energy dietary supplement acts on earlier brain processes than we thought.","authors":"Karina J Maciejewska","doi":"10.3389/fninf.2025.1563893","DOIUrl":"10.3389/fninf.2025.1563893","url":null,"abstract":"<p><strong>Introduction: </strong>This paper describes an experimental work using machine learning (ML) as a \"decoding for interpretation\" to understand the brain's physiology better.</p><p><strong>Methods: </strong>Multivariate pattern analysis (MVPA) was used to decode the patterns of event-related potentials (ERPs, brain responses to stimuli) in a visual oddball task. The ERPs were measured before (run 1) and after (30 min-run 2, 90 min-run 3) a single dose of an energy dietary supplement with only a small amount of caffeine.</p><p><strong>Results: </strong>Its effect on ERPs was successfully decoded. Above-chance decoding accuracies were obtained between ∼350 and 450 ms (corresponds to P3 peak) after stimulus onset for both the placebo and study groups, whereas between ∼200 and 260 ms (corresponds to P2 waveform) only in the placebo group. Moreover, the decoding accuracies were significantly higher in the placebo than in the study group in the 200-250 ms and 450-500 ms time bins. Our previously reported findings showed an increase in P3 amplitude among the runs only in the placebo group, indicating a reduction of mental fatigue caused by the supplementation.</p><p><strong>Discussion: </strong>Thus, this paper extends these results, showing that the dietary supplement affected the brain's neural activity related to the attention-related processing of the visual stimuli in the oddball task already at the early processing stage. This implies that inhibiting the fatigue-related brain changes after only a single dose of a dietary neurostimulant acts on early and late processing stages. This emphasizes the value of decoding for interpretation in ERP research. The results also point out the necessity of controlling the uptake of dietary supplements before the neurophysiological examinations.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1563893"},"PeriodicalIF":2.5,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144689712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digitoids: a novel computational platform for mimicking oxygen-dependent firing of neurons in vitro. 类digitoid:一种在体外模拟依赖氧的神经元放电的新型计算平台。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-07-01 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1549916
Rachele Fabbri, Ermes Botte, Arti Ahluwalia, Chiara Magliaro
{"title":"Digitoids: a novel computational platform for mimicking oxygen-dependent firing of neurons <i>in vitro</i>.","authors":"Rachele Fabbri, Ermes Botte, Arti Ahluwalia, Chiara Magliaro","doi":"10.3389/fninf.2025.1549916","DOIUrl":"10.3389/fninf.2025.1549916","url":null,"abstract":"<p><strong>Introduction: </strong>Computational models are valuable tools for understanding and studying a wide range of characteristics and mechanisms of the brain. Furthermore, they can also be exploited to explore biological neural networks from neuronal cultures. However, few of the current in silico approaches consider the energetic demand of neurons to sustain their electrophysiological functions, specifically their well-known oxygen-dependent firing.</p><p><strong>Methods: </strong>In this work, we introduce Digitoids, a computational platform which integrates a Hodgkin-Huxley-like model to describe the time-dependent oscillations of the neuronal membrane potential with oxygen dynamics in the culture environment. In Digitoids, neurons are connected to each other according to Small-World topologies observed in cell cultures, and oxygen consumption by cells is modeled as limited by diffusion through the culture medium. The oxygen consumed is used to fuel their basal metabolism and the activity of Na<sup>+</sup>-K<sup>+</sup>-ATP membrane pumps, thus it modulates neuronal firing.</p><p><strong>Results: </strong>Our simulations show that the characteristics of neuronal firing predicted throughout the network are related to oxygen availability. In addition, the average firing rate predicted by Digitoids is statistically similar to that measured in neuronal networks <i>in vitro</i>, further proving the relevance of this platform.</p><p><strong>Dicussion: </strong>Digitoids paves the way for a new generation of <i>in silico</i> models of neuronal networks, establishing the oxygen dependence of electrophysiological dynamics as a fundamental requirement to improve their physiological relevance.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1549916"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144642248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From pronounced to imagined: improving speech decoding with multi-condition EEG data. 从发音到想象:用多条件脑电数据改进语音解码。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-06-27 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1583428
Denise Alonso-Vázquez, Omar Mendoza-Montoya, Ricardo Caraza, Hector R Martinez, Javier M Antelis
{"title":"From pronounced to imagined: improving speech decoding with multi-condition EEG data.","authors":"Denise Alonso-Vázquez, Omar Mendoza-Montoya, Ricardo Caraza, Hector R Martinez, Javier M Antelis","doi":"10.3389/fninf.2025.1583428","DOIUrl":"10.3389/fninf.2025.1583428","url":null,"abstract":"<p><strong>Introduction: </strong><i>Imagined speech</i> decoding using EEG holds promising applications for individuals with motor neuron diseases, although its performance remains limited due to small dataset sizes and the absence of sensory feedback. Here, we investigated whether incorporating EEG data from <i>overt</i> (pronounced) speech could enhance <i>imagined speech</i> classification.</p><p><strong>Methods: </strong>Our approach systematically compares four classification scenarios by modifying the training dataset: intra-subject (using only <i>imagined speech</i>, combining <i>overt</i> and <i>imagined speech</i>, and using only <i>overt speech</i>) and multi-subject (combining <i>overt speech</i> data from different participants with the <i>imagined speech</i> of the target participant). We implemented all scenarios using the convolutional neural network EEGNet. To this end, twenty-four healthy participants pronounced and imagined five Spanish words.</p><p><strong>Results: </strong>In binary word-pair classifications, combining <i>overt</i> and <i>imagined speech</i> data in the intra-subject scenario led to accuracy improvements of 3%-5.17% in four out of 10 word pairs, compared to training with <i>imagined speech</i> only. Although the highest individual accuracy (95%) was achieved with <i>imagined speech</i> alone, the inclusion of <i>overt speech</i> data allowed more participants to surpass 70% accuracy, increasing from 10 (<i>imagined only</i>) to 15 participants. In the intra-subject multi-class scenario, combining <i>overt</i> and <i>imagined speech</i> did not yield statistically significant improvements over using <i>imagined speech</i> exclusively.</p><p><strong>Discussion: </strong>Finally, we observed that features such as word length, phonological complexity, and frequency of use contributed to higher discriminability between certain <i>imagined</i> word pairs. These findings suggest that incorporating <i>overt speech</i> data can improve <i>imagined speech</i> decoding in individualized models, offering a feasible strategy to support the early adoption of brain-computer interfaces before speech deterioration occurs in individuals with motor neuron diseases.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1583428"},"PeriodicalIF":2.5,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144625885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Advanced EEG analysis techniques for neurological disorders. 社论:神经系统疾病的先进脑电图分析技术。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1637890
Jisu Elsa Jacob, Sreejith Chandrasekharan
{"title":"Editorial: Advanced EEG analysis techniques for neurological disorders.","authors":"Jisu Elsa Jacob, Sreejith Chandrasekharan","doi":"10.3389/fninf.2025.1637890","DOIUrl":"https://doi.org/10.3389/fninf.2025.1637890","url":null,"abstract":"","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1637890"},"PeriodicalIF":2.5,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging neuroscience and AI: a survey on large language models for neurological signal interpretation. 桥接神经科学和人工智能:神经信号解释的大型语言模型的调查。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1561401
Sreejith Chandrasekharan, Jisu Elsa Jacob
{"title":"Bridging neuroscience and AI: a survey on large language models for neurological signal interpretation.","authors":"Sreejith Chandrasekharan, Jisu Elsa Jacob","doi":"10.3389/fninf.2025.1561401","DOIUrl":"10.3389/fninf.2025.1561401","url":null,"abstract":"<p><p>Electroencephalogram (EEG) signal analysis is important for the diagnosis of various neurological conditions. Traditional deep neural networks, such as convolutional networks, sequence-to-sequence networks, and hybrids of such neural networks were proven to be effective for a wide range of neurological disease classifications. However, these are limited by the requirement of a large dataset, extensive training, and hyperparameter tuning, which require expert-level machine learning knowledge. This survey paper aims to explore the ability of Large Language Models (LLMs) to transform existing systems of EEG-based disease diagnostics. LLMs have a vast background knowledge in neuroscience, disease diagnostics, and EEG signal processing techniques. Thus, these models are capable of achieving expert-level performance with minimal training data, nominal fine-tuning, and less computational overhead, leading to a shorter time to find effective solutions for diagnostics. Further, in comparison with traditional methods, LLM's capability to generate intermediate results and meaningful reasoning makes it more reliable and transparent. This paper delves into several use cases of LLM in EEG signal analysis and attempts to provide a comprehensive understanding of techniques in the domain that can be applied to different disease diagnostics. The study also strives to highlight challenges in the deployment of LLM models, ethical considerations, and bottlenecks in optimizing models due to requirements of specialized methods such as Low-Rank Adapation. In general, this survey aims to stimulate research in the area of EEG disease diagnostics by effectively using LLMs and associated techniques in machine learning pipelines.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1561401"},"PeriodicalIF":2.5,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating machine learning pipelines for multimodal neuroimaging in small cohorts: an ALS case study. 在小队列中评估多模态神经成像的机器学习管道:ALS案例研究。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-06-13 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1568116
Shailesh Appukuttan, Aude-Marie Grapperon, Mounir Mohamed El Mendili, Hugo Dary, Maxime Guye, Annie Verschueren, Jean-Philippe Ranjeva, Shahram Attarian, Wafaa Zaaraoui, Matthieu Gilson
{"title":"Evaluating machine learning pipelines for multimodal neuroimaging in small cohorts: an ALS case study.","authors":"Shailesh Appukuttan, Aude-Marie Grapperon, Mounir Mohamed El Mendili, Hugo Dary, Maxime Guye, Annie Verschueren, Jean-Philippe Ranjeva, Shahram Attarian, Wafaa Zaaraoui, Matthieu Gilson","doi":"10.3389/fninf.2025.1568116","DOIUrl":"10.3389/fninf.2025.1568116","url":null,"abstract":"<p><p>Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1568116"},"PeriodicalIF":2.5,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules. 一种通用的建模语言和代码生成工具,用于模拟具有高级可塑性规则的峰值神经网络。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1544143
Charl Linssen, Pooja N Babu, Jochen M Eppler, Luca Koll, Bernhard Rumpe, Abigail Morrison
{"title":"NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules.","authors":"Charl Linssen, Pooja N Babu, Jochen M Eppler, Luca Koll, Bernhard Rumpe, Abigail Morrison","doi":"10.3389/fninf.2025.1544143","DOIUrl":"10.3389/fninf.2025.1544143","url":null,"abstract":"<p><p>With increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable-adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1544143"},"PeriodicalIF":2.5,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144324957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of whole brain sleep electroencephalogram using deep oscillatory neural network. 基于深度振荡神经网络的全脑睡眠脑电图建模。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-05-14 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1513374
Sayan Ghosh, Dipayan Biswas, N R Rohan, Sujith Vijayan, V Srinivasa Chakravarthy
{"title":"Modeling of whole brain sleep electroencephalogram using deep oscillatory neural network.","authors":"Sayan Ghosh, Dipayan Biswas, N R Rohan, Sujith Vijayan, V Srinivasa Chakravarthy","doi":"10.3389/fninf.2025.1513374","DOIUrl":"10.3389/fninf.2025.1513374","url":null,"abstract":"<p><p>This study presents a general trainable network of Hopf oscillators to model high-dimensional electroencephalogram (EEG) signals across different sleep stages. The proposed architecture consists of two main components: a layer of interconnected oscillators and a complex-valued feed-forward network designed with and without a hidden layer. Incorporating a hidden layer in the feed-forward network leads to lower reconstruction errors than the simpler version without it. Our model reconstructs EEG signals across all five sleep stages and predicts the subsequent 5 s of EEG activity. The predicted data closely aligns with the empirical EEG regarding mean absolute error, power spectral similarity, and complexity measures. We propose three models, each representing a stage of increasing complexity from initial training to architectures with and without hidden layers. In these models, the oscillators initially lack spatial localization. However, we introduce spatial constraints in the final two models by superimposing spherical shells and rectangular geometries onto the oscillator network. Overall, the proposed model represents a step toward constructing a large-scale, biologically inspired model of brain dynamics.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1513374"},"PeriodicalIF":2.5,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144173389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Net2Brain: a toolbox to compare artificial vision models with human brain responses. Net2Brain:一个将人工视觉模型与人脑反应进行比较的工具箱。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-05-06 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1515873
Domenic Bersch, Martina G Vilas, Sari Saba-Sadiya, Timothy Schaumlöffel, Kshitij Dwivedi, Christina Sartzetaki, Radoslaw M Cichy, Gemma Roig
{"title":"Net2Brain: a toolbox to compare artificial vision models with human brain responses.","authors":"Domenic Bersch, Martina G Vilas, Sari Saba-Sadiya, Timothy Schaumlöffel, Kshitij Dwivedi, Christina Sartzetaki, Radoslaw M Cichy, Gemma Roig","doi":"10.3389/fninf.2025.1515873","DOIUrl":"10.3389/fninf.2025.1515873","url":null,"abstract":"<p><p>In cognitive neuroscience, the integration of deep neural networks (DNNs) with traditional neuroscientific analyses has significantly advanced our understanding of both biological neural processes and the functioning of DNNs. However, challenges remain in effectively comparing the representational spaces of artificial models and brain data, particularly due to the growing variety of models and the specific demands of neuroimaging research. To address these challenges, we present Net2Brain, a Python-based toolbox that provides an end-to-end pipeline for incorporating DNNs into neuroscience research, encompassing dataset download, a large selection of models, feature extraction, evaluation, and visualization. Net2Brain provides functionalities in four key areas. First, it offers access to over 600 DNNs trained on diverse tasks across multiple modalities, including vision, language, audio, and multimodal data, organized through a carefully structured taxonomy. Second, it provides a streamlined API for downloading and handling popular neuroscience datasets, such as the NSD and THINGS dataset, allowing researchers to easily access corresponding brain data. Third, Net2Brain facilitates a wide range of analysis options, including feature extraction, representational similarity analysis (RSA), and linear encoding, while also supporting advanced techniques like variance partitioning and searchlight analysis. Finally, the toolbox integrates seamlessly with other established open source libraries, enhancing interoperability and promoting collaborative research. By simplifying model selection, data processing, and evaluation, Net2Brain empowers researchers to conduct more robust, flexible, and reproducible investigations of the relationships between artificial and biological neural representations.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1515873"},"PeriodicalIF":2.5,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144110310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions. 使用多模态神经成像进行阿尔茨海默病早期诊断的深度学习进展:挑战和未来方向。
IF 2.5 4区 医学
Frontiers in Neuroinformatics Pub Date : 2025-05-02 eCollection Date: 2025-01-01 DOI: 10.3389/fninf.2025.1557177
Muhammad Liaquat Raza, Syed Tawassul Hassan, Subia Jamil, Noorulain Hyder, Kinza Batool, Sajidah Walji, Muhammad Khizar Abbas
{"title":"Advancements in deep learning for early diagnosis of Alzheimer's disease using multimodal neuroimaging: challenges and future directions.","authors":"Muhammad Liaquat Raza, Syed Tawassul Hassan, Subia Jamil, Noorulain Hyder, Kinza Batool, Sajidah Walji, Muhammad Khizar Abbas","doi":"10.3389/fninf.2025.1557177","DOIUrl":"10.3389/fninf.2025.1557177","url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease is a progressive neurodegenerative disorder challenging early diagnosis and treatment. Recent advancements in deep learning algorithms applied to multimodal brain imaging offer promising solutions for improving diagnostic accuracy and predicting disease progression.</p><p><strong>Method: </strong>This narrative review synthesizes current literature on deep learning applications in Alzheimer's disease diagnosis using multimodal neuroimaging. The review process involved a comprehensive search of relevant databases (PubMed, Embase, Google Scholar and ClinicalTrials.gov), selection of pertinent studies, and critical analysis of findings. We employed a best-evidence approach, prioritizing high-quality studies and identifying consistent patterns across the literature.</p><p><strong>Results: </strong>Deep learning architectures, including convolutional neural networks, recurrent neural networks, and transformer-based models, have shown remarkable potential in analyzing multimodal neuroimaging data. These models can effectively process structural and functional imaging modalities, extracting relevant features and patterns associated with Alzheimer's pathology. Integration of multiple imaging modalities has demonstrated improved diagnostic accuracy compared to single-modality approaches. Deep learning models have also shown promise in predictive modeling, identifying potential biomarkers and forecasting disease progression.</p><p><strong>Discussion: </strong>While deep learning approaches show great potential, several challenges remain. Data heterogeneity, small sample sizes, and limited generalizability across diverse populations are significant hurdles. The clinical translation of these models requires careful consideration of interpretability, transparency, and ethical implications. The future of AI in neurodiagnostics for Alzheimer's disease looks promising, with potential applications in personalized treatment strategies.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1557177"},"PeriodicalIF":2.5,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144093326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信