Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke
{"title":"FAIR African brain data: challenges and opportunities.","authors":"Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke","doi":"10.3389/fninf.2025.1530445","DOIUrl":"10.3389/fninf.2025.1530445","url":null,"abstract":"<p><strong>Introduction: </strong>The effectiveness of research and innovation often relies on the diversity or heterogeneity of datasets that are Findable, Accessible, Interoperable and Reusable (FAIR). However, the global landscape of brain data is yet to achieve desired levels of diversity that can facilitate generalisable outputs. Brain datasets from low-and middle-income countries of Africa are still missing in the global open science ecosystem. This can mean that decades of brain research and innovation may not be generalisable to populations in Africa.</p><p><strong>Methods: </strong>This research combined experiential learning or experiential research with a survey questionnaire. The experiential research involved deriving insights from direct, hands-on experiences of collecting African Brain data in view of making it FAIR. This was a critical process of action, reflection, and learning from doing data collection. A questionnaire was then used to validate the findings from the experiential research and provide wider contexts for these findings.</p><p><strong>Results: </strong>The experiential research revealed major challenges to FAIR African brain data that can be categorised as socio-cultural, economic, technical, ethical and legal challenges. It also highlighted opportunities for growth that include capacity development, development of technical infrastructure, funding as well as policy and regulatory changes. The questionnaire then showed that the wider African neuroscience community believes that these challenges can be ranked in order of priority as follows: Technical, economic, socio-cultural and ethical and legal challenges.</p><p><strong>Conclusion: </strong>We conclude that African researchers need to work together as a community to address these challenges in a way to maximise efforts and to build a thriving FAIR brain data ecosystem that is socially acceptable, ethically responsible, technically robust and legally compliant.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1530445"},"PeriodicalIF":2.5,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Ivan Hernandez, Natalia Afek, Magda Gawłowska, Paweł Oświęcimka, Magdalena Fafrowicz, Agnieszka Slowik, Marcin Wnuk, Monika Marona, Klaudia Nowak, Kamila Zur-Wyrozumska, Mary Jean Amon, P A Hancock, Tadeusz Marek, Waldemar Karwowski
{"title":"Impact of interferon-β and dimethyl fumarate on nonlinear dynamical characteristics of electroencephalogram signatures in patients with multiple sclerosis.","authors":"Christopher Ivan Hernandez, Natalia Afek, Magda Gawłowska, Paweł Oświęcimka, Magdalena Fafrowicz, Agnieszka Slowik, Marcin Wnuk, Monika Marona, Klaudia Nowak, Kamila Zur-Wyrozumska, Mary Jean Amon, P A Hancock, Tadeusz Marek, Waldemar Karwowski","doi":"10.3389/fninf.2025.1519391","DOIUrl":"https://doi.org/10.3389/fninf.2025.1519391","url":null,"abstract":"<p><strong>Introduction: </strong>Multiple sclerosis (MS) is an intricate neurological condition that affects many individuals worldwide, and there is a considerable amount of research into understanding the pathology and treatment development. Nonlinear analysis has been increasingly utilized in analyzing electroencephalography (EEG) signals from patients with various neurological disorders, including MS, and it has been proven to be an effective tool for comprehending the complex nature exhibited by the brain.</p><p><strong>Methods: </strong>This study seeks to investigate the impact of Interferon-β (IFN-β) and dimethyl fumarate (DMF) on MS patients using sample entropy (SampEn) and Higuchi's fractal dimension (HFD) on collected EEG signals. The data were collected at Jagiellonian University in Krakow, Poland. In this study, a total of 175 subjects were included across the groups: IFN-β (<i>n</i> = 39), DMF (<i>n</i> = 53), and healthy controls (<i>n</i> = 83).</p><p><strong>Results: </strong>The analysis indicated that each treatment group exhibited more complex EEG signals than the control group. SampEn had demonstrated significant sensitivity to the effects of each treatment compared to HFD, while HFD showed more sensitivity to changes over time, particularly in the DMF group.</p><p><strong>Discussion: </strong>These findings enhance our understanding of the complex nature of MS, support treatment development, and demonstrate the effectiveness of nonlinear analysis methods.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1519391"},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of natural and synthetic noise data augmentation on physical action classification by brain-computer interface and deep learning.","authors":"Yuri Gordienko, Nikita Gordienko, Vladyslav Taran, Anis Rojbi, Sergii Telenyk, Sergii Stirenko","doi":"10.3389/fninf.2025.1521805","DOIUrl":"10.3389/fninf.2025.1521805","url":null,"abstract":"<p><p>Analysis of electroencephalography (EEG) signals gathered by brain-computer interface (BCI) recently demonstrated that deep neural networks (DNNs) can be effectively used for investigation of time sequences for physical actions (PA) classification. In this study, the relatively simple DNN with fully connected network (FCN) components and convolutional neural network (CNN) components was considered to classify finger-palm-hand manipulations each from the grasp-and-lift (GAL) dataset. The main aim of this study was to imitate and investigate environmental influence by the proposed noise data augmentation (NDA) of two kinds: (i) natural NDA by inclusion of noise EEG data from neighboring regions by increasing the sampling size <i>N</i> and the different offset values for sample labeling and (ii) synthetic NDA by adding the generated Gaussian noise. The natural NDA by increasing <i>N</i> leads to the higher micro and macro area under the curve (AUC) for receiver operating curve values for the bigger <i>N</i> values than usage of synthetic NDA. The detrended fluctuation analysis (DFA) was applied to investigate the fluctuation properties and calculate the correspondent Hurst exponents <i>H</i> for the quantitative characterization of the fluctuation variability. <i>H</i> values for the low time window scales (< 2 s) are higher in comparison with ones for the bigger time window scales. For example, <i>H</i> more than 2-3 times higher for some PAs, i.e., it means that the shorter EEG fragments (< 2 s) demonstrate the scaling behavior of the higher complexity than the longer fragments. As far as these results were obtained by the relatively small DNN with the low resource requirements, this approach can be promising for porting such models to Edge Computing infrastructures on devices with the very limited computational resources.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1521805"},"PeriodicalIF":2.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An action decoding framework combined with deep neural network for predicting the semantics of human actions in videos from evoked brain activities.","authors":"Yuanyuan Zhang, Manli Tian, Baolin Liu","doi":"10.3389/fninf.2025.1526259","DOIUrl":"10.3389/fninf.2025.1526259","url":null,"abstract":"<p><strong>Introduction: </strong>Recently, numerous studies have focused on the semantic decoding of perceived images based on functional magnetic resonance imaging (fMRI) activities. However, it remains unclear whether it is possible to establish relationships between brain activities and semantic features of human actions in video stimuli. Here we construct a framework for decoding action semantics by establishing relationships between brain activities and semantic features of human actions.</p><p><strong>Methods: </strong>To effectively use a small amount of available brain activity data, our proposed method employs a pre-trained image action recognition network model based on an expanding three-dimensional (X3D) deep neural network framework (DNN). To apply brain activities to the image action recognition network, we train regression models that learn the relationship between brain activities and deep-layer image features. To improve decoding accuracy, we join by adding the nonlocal-attention mechanism module to the X3D model to capture long-range temporal and spatial dependence, proposing a multilayer perceptron (MLP) module of multi-task loss constraint to build a more accurate regression mapping approach and performing data enhancement through linear interpolation to expand the amount of data to reduce the impact of a small sample.</p><p><strong>Results and discussion: </strong>Our findings indicate that the features in the X3D-DNN are biologically relevant, and capture information useful for perception. The proposed method enriches the semantic decoding model. We have also conducted several experiments with data from different subsets of brain regions known to process visual stimuli. The results suggest that semantic information for human actions is widespread across the entire visual cortex.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1526259"},"PeriodicalIF":2.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143566696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vadym Gryshchuk, Devesh Singh, Stefan Teipel, Martin Dyrba
{"title":"Contrastive self-supervised learning for neurodegenerative disorder classification.","authors":"Vadym Gryshchuk, Devesh Singh, Stefan Teipel, Martin Dyrba","doi":"10.3389/fninf.2025.1527582","DOIUrl":"10.3389/fninf.2025.1527582","url":null,"abstract":"<p><strong>Introduction: </strong>Neurodegenerative diseases such as Alzheimer's disease (AD) or frontotemporal lobar degeneration (FTLD) involve specific loss of brain volume, detectable <i>in vivo</i> using T1-weighted MRI scans. Supervised machine learning approaches classifying neurodegenerative diseases require diagnostic-labels for each sample. However, it can be difficult to obtain expert labels for a large amount of data. Self-supervised learning (SSL) offers an alternative for training machine learning models without data-labels.</p><p><strong>Methods: </strong>We investigated if the SSL models can be applied to distinguish between different neurodegenerative disorders in an interpretable manner. Our method comprises a feature extractor and a downstream classification head. A deep convolutional neural network, trained with a contrastive loss, serves as the feature extractor that learns latent representations. The classification head is a single-layer perceptron that is trained to perform diagnostic group separation. We used <i>N</i> = 2,694 T1-weighted MRI scans from four data cohorts: two ADNI datasets, AIBL and FTLDNI, including cognitively normal controls (CN), cases with prodromal and clinical AD, as well as FTLD cases differentiated into its phenotypes.</p><p><strong>Results: </strong>Our results showed that the feature extractor trained in a self-supervised way provides generalizable and robust representations for the downstream classification. For AD vs. CN, our model achieves 82% balanced accuracy on the test subset and 80% on an independent holdout dataset. Similarly, the Behavioral variant of frontotemporal dementia (BV) vs. CN model attains an 88% balanced accuracy on the test subset. The average feature attribution heatmaps obtained by the Integrated Gradient method highlighted hallmark regions, i.e., temporal gray matter atrophy for AD, and insular atrophy for BV.</p><p><strong>Conclusion: </strong>Our models perform comparably to state-of-the-art supervised deep learning approaches. This suggests that the SSL methodology can successfully make use of unannotated neuroimaging datasets as training data while remaining robust and interpretable.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1527582"},"PeriodicalIF":2.5,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143540685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative evaluation method of stroke association based on multidimensional gait parameters by using machine learning.","authors":"Cheng Wang, Zhou Long, Xiang-Dong Wang, You-Qi Kong, Li-Chun Zhou, Wei-Hua Jia, Pei Li, Jing Wang, Xiao-Juan Wang, Tian Tian","doi":"10.3389/fninf.2025.1544372","DOIUrl":"10.3389/fninf.2025.1544372","url":null,"abstract":"<p><strong>Objective: </strong>NIHSS for stroke is widely used in clinical, but it is complex and subjective. The purpose of the study is to present a quantitative evaluation method of stroke association based on multi-dimensional gait parameters by using machine learning.</p><p><strong>Methods: </strong>39 ischemic stroke patients with hemiplegia were selected as the stroke group and 187 healthy adults from the community as the control group. Gaitboter system was used for gait analysis. Through the labeling of stroke patients by clinicians with NIHSS score, all gait parameters obtained were used to select appropriate gait parameters. By using machine learning algorithm, a discriminant model and a hierarchical model were trained.</p><p><strong>Results: </strong>The discriminant model was used to distinguish between healthy people and stroke patients. The overall detection accuracy of the model based on KNN, SVM and Randomforest algorithms is 92.86, 92.86 and 90.00%, respectively. The hierarchical model was used to judge the severity of stroke in stroke patients. The model based on Randomforest, SVM and AdaBoost algorithm had an overall detection accuracy of 71.43, 85.71 and 85.71%, respectively.</p><p><strong>Conclusion: </strong>The proposed stroke association quantitative evaluation method based on multi-dimensional gait parameters has the characteristics of high accuracy, objectivity, and quantification.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1544372"},"PeriodicalIF":2.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The classification of absence seizures using power-to-power cross-frequency coupling analysis with a deep learning network.","authors":"A V Medvedev, B Lehmann","doi":"10.3389/fninf.2025.1513661","DOIUrl":"10.3389/fninf.2025.1513661","url":null,"abstract":"<p><p>High frequency oscillations are important novel biomarkers of epileptic tissue. The interaction of oscillations across different time scales is revealed as cross-frequency coupling (CFC) representing a high-order structure in the functional organization of brain rhythms. Power-to-power coupling (PPC) is one form of coupling with significant research attesting to its neurobiological significance as well as its computational efficiency, yet has been hitherto unexplored within seizure classification literature. New artificial intelligence methods such as deep learning neural networks can provide powerful tools for automated analysis of EEG. Here we present a Stacked Sparse Autoencoder (SSAE) trained to classify absence seizure activity based on this important form of cross-frequency patterns within scalp EEG. The analysis is done on the EEG records from the Temple University Hospital database. Absence seizures (<i>n</i> = 94) from 12 patients were taken into analysis along with segments of background activity. Power-to-power coupling was calculated between all frequencies 2-120 Hz pairwise using the EEGLAB toolbox. The resulting CFC matrices were used as training or testing inputs to the autoencoder. The trained network was able to recognize background and seizure segments (not used in training) with a sensitivity of 93.1%, specificity of 99.5% and overall accuracy of 96.8%. The results provide evidence both for (1) the relevance of PPC for seizure classification, as well as (2) the efficacy of an approach combining PPC with SSAE neural networks for automated classification of absence seizures within scalp EEG.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1513661"},"PeriodicalIF":2.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying natural inhibitors against FUS protein in dementia through machine learning, molecular docking, and dynamics simulation.","authors":"Darwin Li","doi":"10.3389/fninf.2024.1439090","DOIUrl":"10.3389/fninf.2024.1439090","url":null,"abstract":"<p><p>Dementia, a complex and debilitating spectrum of neurodegenerative diseases, presents a profound challenge in the quest for effective treatments. The FUS protein is well at the center of this problem, as it is frequently dysregulated in the various disorders. We chose a route of computational work that involves targeting natural inhibitors of the FUS protein, offering a novel treatment strategy. We first reviewed the FUS protein's framework; early forecasting models using the AlphaFold2 and SwissModel algorithms indicated a loop-rich protein-a structure component correlating with flexibility. However, these models showed limitations, as reflected by inadequate ERRAT and Verify3D scores. Seeking enhanced accuracy, we turned to the I-TASSER suite, which delivered a refined structural model affirmed by robust validation metrics. With a reliable model in hand, our study utilized machine learning techniques, particularly the Random Forest algorithm, to navigate through a vast dataset of phytochemicals. This led to the identification of nimbinin, dehydroxymethylflazine, and several other compounds as potential FUS inhibitors. Notably, dehydroxymethylflazine and cleroindicin C identified during molecular docking analyses-facilitated by AutoDock Vina-for their high binding affinities and stability in interaction with the FUS protein, as corroborated by extensive molecular dynamics simulations. Originating from medicinal plants, these compounds are not only structurally compatible with the target protein but also adhere to pharmacokinetic profiles suitable for drug development, including optimal molecular weight and LogP values conducive to blood-brain barrier penetration. This computational exploration paves the way for subsequent experimental validation and highlights the potential of these natural compounds as innovative agents in the treatment of dementia.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1439090"},"PeriodicalIF":2.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced heart sound anomaly detection via WCOS: a semi-supervised framework integrating wavelet, autoencoder and SVM.","authors":"Peipei Zeng, Shuimiao Kang, Fan Fan, Jiyuan Liu","doi":"10.3389/fninf.2025.1530047","DOIUrl":"10.3389/fninf.2025.1530047","url":null,"abstract":"<p><p>Anomaly detection is a typical binary classification problem under the condition of unbalanced samples, which has been widely used in various fields of data mining. For example, it can help detect heart murmurs when the heart is structurally abnormal, to tell if a newborn has congenital heart disease. Due to the low time and high efficiency, most work focuses on the semi- supervised anomaly detection method. However, the anomaly detection effect of this method is not high because of massive data with uneven samples and different noise. To improve the accuracy of anomaly detection under unbalanced sample conditions, we propose a new semi-supervised anomaly detection method (WCOS) based on semi-supervised clustering, which combines wavelet reconstruction, convolutional autoencoder, and one classification support vector machine. In this way, we can not only distinguish a small proportion of abnormal heart sounds in the huge data scale but also filter the noise through the noise reduction network, thus significantly improving the detection accuracy. In addition, we evaluated our method using real datasets. When the noise of sigma = 0.5, the AUC standard deviation of the WR-CAE-OCSVM is 19.2, 54.1, and 29.8% lower than that of WR-OCSVM, CAE-OCSVM and OCSVM, respectively. The results confirmed the higher accuracy of anomaly detection in WCOS compared to other state-of-the-art methods.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1530047"},"PeriodicalIF":2.5,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Recent applications of noninvasive physiological signals and artificial intelligence.","authors":"Irma N Angulo, Eduardo Iáñez, Andres Ubeda","doi":"10.3389/fninf.2025.1543103","DOIUrl":"https://doi.org/10.3389/fninf.2025.1543103","url":null,"abstract":"","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1543103"},"PeriodicalIF":2.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}