{"title":"Connectomes: from a sparsity of networks to large-scale databases.","authors":"Marcus Kaiser","doi":"10.3389/fninf.2023.1170337","DOIUrl":"10.3389/fninf.2023.1170337","url":null,"abstract":"<p><p>The analysis of whole brain networks started in the 1980s when only a handful of connectomes were available. In these early days, information about the human connectome was absent and one could only dream about having information about connectivity in a single human subject. Thanks to non-invasive methods such as diffusion imaging, we now know about connectivity in many species and, for some species, in many individuals. To illustrate the rapid change in availability of connectome data, the UK Biobank is on track to record structural and functional connectivity in 100,000 human subjects. Moreover, connectome data from a range of species is now available: from <i>Caenorhabditis elegans</i> and the fruit fly to pigeons, rodents, cats, non-human primates, and humans. This review will give a brief overview of what structural connectivity data is now available, how connectomes are organized, and how their organization shows common features across species. Finally, I will outline some of the current challenges and potential future work in making use of connectome information.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1170337"},"PeriodicalIF":3.5,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9782321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning the heterogeneous representation of brain's structure from serial SEM images using a masked autoencoder.","authors":"Ao Cheng, Jiahao Shi, Lirong Wang, Ruobing Zhang","doi":"10.3389/fninf.2023.1118419","DOIUrl":"10.3389/fninf.2023.1118419","url":null,"abstract":"<p><strong>Introduction: </strong>The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation ability of the model is strongly correlated with the number of such high-quality labels. Recently, the masked autoencoder (MAE) has been shown to effectively pre-train Vision Transformers (ViT) to improve their representational capabilities.</p><p><strong>Methods: </strong>In this paper, we investigated a self-pre-training paradigm for serial SEM images with MAE to implement downstream segmentation tasks. We randomly masked voxels in three-dimensional brain image patches and trained an autoencoder to reconstruct the neuronal structures.</p><p><strong>Results and discussion: </strong>We tested different pre-training and fine-tuning configurations on three different serial SEM datasets of mouse brains, including two public ones, SNEMI3D and MitoEM-R, and one acquired in our lab. A series of masking ratios were examined and the optimal ratio for pre-training efficiency was spotted for 3D segmentation. The MAE pre-training strategy significantly outperformed the supervised learning from scratch. Our work shows that the general framework of can be a unified approach for effective learning of the representation of heterogeneous neural structural features in serial SEM images to greatly facilitate brain connectome reconstruction.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1118419"},"PeriodicalIF":3.5,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arthur W Toga, Mukta Phatak, Ioannis Pappas, Simon Thompson, Caitlin P McHugh, Matthew H S Clement, Sarah Bauermeister, Tetsuyuki Maruyama, John Gallacher
{"title":"The pursuit of approaches to federate data to accelerate Alzheimer's disease and related dementia research: GAAIN, DPUK, and ADDI.","authors":"Arthur W Toga, Mukta Phatak, Ioannis Pappas, Simon Thompson, Caitlin P McHugh, Matthew H S Clement, Sarah Bauermeister, Tetsuyuki Maruyama, John Gallacher","doi":"10.3389/fninf.2023.1175689","DOIUrl":"10.3389/fninf.2023.1175689","url":null,"abstract":"<p><p>There is common consensus that data sharing accelerates science. Data sharing enhances the utility of data and promotes the creation and competition of scientific ideas. Within the Alzheimer's disease and related dementias (ADRD) community, data types and modalities are spread across many organizations, geographies, and governance structures. The ADRD community is not alone in facing these challenges, however, the problem is even more difficult because of the need to share complex biomarker data from centers around the world. Heavy-handed data sharing mandates have, to date, been met with limited success and often outright resistance. Interest in making data Findable, Accessible, Interoperable, and Reusable (FAIR) has often resulted in centralized platforms. However, when data governance and sovereignty structures do not allow the movement of data, other methods, such as federation, must be pursued. Implementation of fully federated data approaches are not without their challenges. The user experience may become more complicated, and federated analysis of unstructured data types remains challenging. Advancement in federated data sharing should be accompanied by improvement in federated learning methodologies so that federated data sharing becomes functionally equivalent to direct access to record level data. In this article, we discuss federated data sharing approaches implemented by three data platforms in the ADRD field: Dementia's Platform UK (DPUK) in 2014, the Global Alzheimer's Association Interactive Network (GAAIN) in 2012, and the Alzheimer's Disease Data Initiative (ADDI) in 2020. We conclude by addressing open questions that the research community needs to solve together.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1175689"},"PeriodicalIF":2.5,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9975366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farzaneh Keyvanfard, Alireza Rahimi Nasab, Abbas Nasiraei-Moghaddam
{"title":"Brain subnetworks most sensitive to alterations of functional connectivity in Schizophrenia: a data-driven approach.","authors":"Farzaneh Keyvanfard, Alireza Rahimi Nasab, Abbas Nasiraei-Moghaddam","doi":"10.3389/fninf.2023.1175886","DOIUrl":"10.3389/fninf.2023.1175886","url":null,"abstract":"<p><p>Functional connectivity (FC) of the brain changes in various brain disorders. Its complexity, however, makes it difficult to obtain a systematic understanding of these alterations, especially when they are found individually and through hypothesis-based methods. It would be easier if the variety of brain connectivity alterations is extracted through data-driven approaches and expressed as variation modules (subnetworks). In the present study, we modified a blind approach to determine inter-group brain variations at the network level and applied it specifically to schizophrenia (SZ) disorder. The analysis is based on the application of independent component analysis (ICA) over the subject's dimension of the FC matrices, obtained from resting-state functional magnetic resonance imaging (rs-fMRI). The dataset included 27 SZ people and 27 completely matched healthy controls (HC). This hypothesis-free approach led to the finding of three brain subnetworks significantly discriminating SZ from HC. The area associated with these subnetworks mostly covers regions in visual, ventral attention, and somatomotor areas, which are in line with previous studies. Moreover, from the graph perspective, significant differences were observed between SZ and HC for these subnetworks, while there was no significant difference when the same parameters (path length, network strength, global/local efficiency, and clustering coefficient) across the same limited data were calculated for the whole brain network. The increased sensitivity of those subnetworks to SZ-induced alterations of connectivity suggested whether an individual scoring method based on their connectivity values can be applied to classify subjects. A simple scoring classifier was then suggested based on two of these subnetworks and resulted in acceptable sensitivity and specificity with an area under the ROC curve of 77.5%. The third subnetwork was found to be a less specific building block (module) for describing SZ alterations. It projected a wider range of inter-individual variations and, therefore, had a lower chance to be considered as a SZ biomarker. These findings confirmed that investigating brain variations from a modular viewpoint can help to find subnetworks that are more sensitive to SZ-induced alterations. Altogether, our study results illustrated the developed method's ability to systematically find brain alterations caused by SZ disorder from a network perspective.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1175886"},"PeriodicalIF":2.5,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9579697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brendan Behan, Francis Jeanson, Heena Cheema, Derek Eng, Fatema Khimji, Anthony L Vaccarino, Tom Gee, Susan G Evans, F Chris MacPhee, Fan Dong, Shahab Shahnazari, Alana Sparks, Emily Martens, Bianca Lasalandra, Stephen R Arnott, Stephen C Strother, Mojib Javadi, Moyez Dharsee, Kenneth R Evans, Kirk Nylen, Tom Mikkelsen
{"title":"FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research.","authors":"Brendan Behan, Francis Jeanson, Heena Cheema, Derek Eng, Fatema Khimji, Anthony L Vaccarino, Tom Gee, Susan G Evans, F Chris MacPhee, Fan Dong, Shahab Shahnazari, Alana Sparks, Emily Martens, Bianca Lasalandra, Stephen R Arnott, Stephen C Strother, Mojib Javadi, Moyez Dharsee, Kenneth R Evans, Kirk Nylen, Tom Mikkelsen","doi":"10.3389/fninf.2023.1158378","DOIUrl":"10.3389/fninf.2023.1158378","url":null,"abstract":"<p><p>The effective sharing of health research data within the healthcare ecosystem can have tremendous impact on the advancement of disease understanding, prevention, treatment, and monitoring. By combining and reusing health research data, increasingly rich insights can be made about patients and populations that feed back into the health system resulting in more effective best practices and better patient outcomes. To achieve the promise of a learning health system, data needs to meet the FAIR principles of findability, accessibility, interoperability, and reusability. Since the inception of the Brain-CODE platform and services in 2012, the Ontario Brain Institute (OBI) has pioneered data sharing activities aligned with FAIR principles in neuroscience. Here, we describe how Brain-CODE has operationalized data sharing according to the FAIR principles. Findable-Brain-CODE offers an interactive and itemized approach for requesters to generate data cuts of interest that align with their research questions. Accessible-Brain-CODE offers multiple data access mechanisms. These mechanisms-that distinguish between metadata access, data access within a secure computing environment on Brain-CODE and data access via export will be discussed. Interoperable-Standardization happens at the data capture level and the data release stage to allow integration with similar data elements. Reusable - Brain-CODE implements several quality assurances measures and controls to maximize data value for reusability. We will highlight the successes and challenges of a FAIR-focused neuroinformatics platform that facilitates the widespread collection and sharing of neuroscience research data for learning health systems.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1158378"},"PeriodicalIF":2.5,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9632638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The image and data archive at the laboratory of neuro imaging.","authors":"Scott C Neu, Karen L Crawford, Arthur W Toga","doi":"10.3389/fninf.2023.1173623","DOIUrl":"10.3389/fninf.2023.1173623","url":null,"abstract":"<p><p>The Image and Data Archive (IDA) is a secure online resource for archiving, exploring, and sharing neuroscience data run by the Laboratory of Neuro Imaging (LONI). The laboratory first started managing neuroimaging data for multi-centered research studies in the late 1990's and since has become a nexus for many multi-site collaborations. By providing management and informatics tools and resources for de-identifying, integrating, searching, visualizing, and sharing a diverse range of neuroscience data, study investigators maintain complete control over data stored in the IDA while benefiting from a robust and reliable infrastructure that protects and preserves research data to maximize data collection investment.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1173623"},"PeriodicalIF":3.5,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zac Bowen, Gudjon Magnusson, Madeline Diep, Ujjwal Ayyangar, Aleksandr Smirnov, Patrick O Kanold, Wolfgang Losert
{"title":"NeuroWRAP: integrating, validating, and sharing neurodata analysis workflows.","authors":"Zac Bowen, Gudjon Magnusson, Madeline Diep, Ujjwal Ayyangar, Aleksandr Smirnov, Patrick O Kanold, Wolfgang Losert","doi":"10.3389/fninf.2023.1082111","DOIUrl":"10.3389/fninf.2023.1082111","url":null,"abstract":"<p><p>Multiphoton calcium imaging is one of the most powerful tools in modern neuroscience. However, multiphoton data require significant pre-processing of images and post-processing of extracted signals. As a result, many algorithms and pipelines have been developed for the analysis of multiphoton data, particularly two-photon imaging data. Most current studies use one of several algorithms and pipelines that are published and publicly available, and add customized upstream and downstream analysis elements to fit the needs of individual researchers. The vast differences in algorithm choices, parameter settings, pipeline composition, and data sources combine to make collaboration difficult, and raise questions about the reproducibility and robustness of experimental results. We present our solution, called NeuroWRAP (www.neurowrap.org), which is a tool that wraps multiple published algorithms together, and enables integration of custom algorithms. It enables development of collaborative, shareable custom workflows and reproducible data analysis for multiphoton calcium imaging data enabling easy collaboration between researchers. NeuroWRAP implements an approach to evaluate the sensitivity and robustness of the configured pipelines. When this sensitivity analysis is applied to a crucial step of image analysis, cell segmentation, we find a substantial difference between two popular workflows, CaImAn and Suite2p. NeuroWRAP harnesses this difference by introducing consensus analysis, utilizing two workflows in conjunction to significantly increase the trustworthiness and robustness of cell segmentation results.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1082111"},"PeriodicalIF":3.5,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9523716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Lisa Ji, Jure Demšar, Clara Fonteneau, Zailyn Tamayo, Lining Pan, Aleksij Kraljič, Andraž Matkovič, Nina Purg, Markus Helmer, Shaun Warrington, Anderson Winkler, Valerio Zerbi, Timothy S Coalson, Matthew F Glasser, Michael P Harms, Stamatios N Sotiropoulos, John D Murray, Alan Anticevic, Grega Repovš
{"title":"QuNex-An integrative platform for reproducible neuroimaging analytics.","authors":"Jie Lisa Ji, Jure Demšar, Clara Fonteneau, Zailyn Tamayo, Lining Pan, Aleksij Kraljič, Andraž Matkovič, Nina Purg, Markus Helmer, Shaun Warrington, Anderson Winkler, Valerio Zerbi, Timothy S Coalson, Matthew F Glasser, Michael P Harms, Stamatios N Sotiropoulos, John D Murray, Alan Anticevic, Grega Repovš","doi":"10.3389/fninf.2023.1104508","DOIUrl":"10.3389/fninf.2023.1104508","url":null,"abstract":"<p><strong>Introduction: </strong>Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability.</p><p><strong>Methods: </strong>To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a \"turnkey\" command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features.</p><p><strong>Results: </strong>The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows <i>via</i> a cohesive translational platform.</p><p><strong>Discussion: </strong>Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1104508"},"PeriodicalIF":3.5,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9386679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-stationary neural signal to image conversion framework for image-based deep learning algorithms.","authors":"Sahaj Anilbhai Patel, Abidin Yildirim","doi":"10.3389/fninf.2023.1081160","DOIUrl":"10.3389/fninf.2023.1081160","url":null,"abstract":"<p><p>This paper presents a time-efficient preprocessing framework that converts any given 1D physiological signal recordings into a 2D image representation for training image-based deep learning models. The non-stationary signal is rasterized into the 2D image using Bresenham's line algorithm with time complexity O(n). The robustness of the proposed approach is evaluated based on two publicly available datasets. This study classified three different neural spikes (multi-class) and EEG epileptic seizure and non-seizure (binary class) based on shapes using a modified 2D Convolution Neural Network (2D CNN). The multi-class dataset consists of artificially simulated neural recordings with different Signal-to-Noise Ratios (SNR). The 2D CNN architecture showed significant performance for all individual SNRs scores with (SNR/ACC): 0.5/99.69, 0.75/99.69, 1.0/99.49, 1.25/98.85, 1.5/97.43, 1.75/95.20 and 2.0/91.98. Additionally, the binary class dataset also achieved 97.52% accuracy by outperforming several others proposed algorithms. Likewise, this approach could be employed on other biomedical signals such as Electrocardiograph (EKG) and Electromyography (EMG).</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1081160"},"PeriodicalIF":2.5,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9273992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anders J Asp, Yaswanth Chintaluru, Sydney Hillan, J Luis Lujan
{"title":"Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes.","authors":"Anders J Asp, Yaswanth Chintaluru, Sydney Hillan, J Luis Lujan","doi":"10.3389/fninf.2023.1150157","DOIUrl":"10.3389/fninf.2023.1150157","url":null,"abstract":"","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"17 ","pages":"1150157"},"PeriodicalIF":2.5,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9284013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}